def get_config(is_train):
    class General:
        log_frequency = 10
        name = __name__.rsplit("/")[-1].rsplit(".")[-1]
        batch_image = 2 if is_train else 1
        fp16 = False

    class KvstoreParam:
        kvstore = "nccl"
        batch_image = General.batch_image
        gpus = [0, 1, 2, 3, 4, 5, 6, 7]
        fp16 = General.fp16

    class NormalizeParam:
        # normalizer = normalizer_factory(type="syncbn", ndev=8, wd_mult=1.0)
        normalizer = normalizer_factory(type="gn")

    class BackboneParam:
        fp16 = General.fp16
        # normalizer = NormalizeParam.normalizer
        normalizer = normalizer_factory(type="fixbn")
        depth = 101
        num_c3_block = 4
        num_c4_block = 23

    class NeckParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class HeadParam:
        num_class = 1 + 80
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        batch_image = General.batch_image

        class point_generate:
            num_points = 9
            scale = 4
            stride = (8, 16, 32, 64, 128)
            transform = "moment"

        class head:
            conv_channel = 256
            point_conv_channel = 256
            mean = None
            std = None

        class proposal:
            pre_nms_top_n = 1000
            post_nms_top_n = None
            nms_thr = None
            min_bbox_side = None

        class point_target:
            target_scale = 4
            num_pos = 1

        class bbox_target:
            pos_iou_thr = 0.5
            neg_iou_thr = 0.5
            min_pos_iou = 0.0

        class focal_loss:
            alpha = 0.25
            gamma = 2.0

    class BboxParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = None
        image_roi = None
        batch_image = None

        class regress_target:
            class_agnostic = None
            mean = None
            std = None

    class RoiParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        out_size = None
        stride = None

    class DatasetParam:
        if is_train:
            image_set = ("coco_train2017", )
        else:
            image_set = ("coco_val2017", )

    backbone = Backbone(BackboneParam)
    neck = Neck(NeckParam)
    head = Head(HeadParam)
    detector = Detector()
    if is_train:
        train_sym = detector.get_train_symbol(backbone, neck, head)
        test_sym = None
    else:
        train_sym = None
        test_sym = detector.get_test_symbol(backbone, neck, head)

    class ModelParam:
        train_symbol = train_sym
        test_symbol = test_sym

        from_scratch = False
        random = True
        memonger = False
        memonger_until = "stage3_unit21_plus"

        class pretrain:
            prefix = "pretrain_model/resnet%s_v1b" % BackboneParam.depth
            epoch = 0
            fixed_param = ["conv0", "stage1", "gamma", "beta"]
            excluded_param = ["gn"]

    class OptimizeParam:
        class optimizer:
            type = "sgd"
            lr = 0.005 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            momentum = 0.9
            wd = 0.0001
            clip_gradient = 35

        class schedule:
            begin_epoch = 0
            end_epoch = 12
            lr_iter = [
                120000 * 16 //
                (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 160000 *
                16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
            ]

        class warmup:
            type = "gradual"
            lr = 0.005 / 8 * len(
                KvstoreParam.gpus) * KvstoreParam.batch_image / 3
            iter = 2000

    class TestScaleParam:
        short_ranges = [600, 800, 1000, 1200]
        long_ranges = [2000, 2000, 2000, 2000]

        @staticmethod
        def add_resize_info(roidb):
            ms_roidb = []
            for r_ in roidb:
                for short, long in zip(TestScaleParam.short_ranges,
                                       TestScaleParam.long_ranges):
                    r = r_.copy()
                    r["resize_long"] = long
                    r["resize_short"] = short
                    ms_roidb.append(r)

            return ms_roidb

    class TestParam:
        min_det_score = 0.05  # filter appended boxes
        max_det_per_image = 100

        process_roidb = TestScaleParam.add_resize_info

        def process_output(x, y):
            return x

        class model:
            prefix = "experiments/{}/checkpoint".format(General.name)
            epoch = OptimizeParam.schedule.end_epoch

        class nms:
            type = "nms"
            thr = 0.5

        class coco:
            annotation = "data/coco/annotations/instances_minival2014.json"

    # data processing
    class NormParam:
        mean = tuple(i * 255 for i in (0.485, 0.456, 0.406))  # RGB order
        std = tuple(i * 255 for i in (0.229, 0.224, 0.225))

    class RandResizeParam:
        short = None  # generate on the fly
        long = None
        short_ranges = [600, 800, 1000, 1200]
        long_ranges = [2000, 2000, 2000, 2000]

    class RandCropParam:
        mode = "center"  # random or center
        short = 800
        long = 1333

    class ResizeParam:
        short = 800
        long = 1333

    class PadParam:
        short = 800
        long = 1333
        max_num_gt = 100

    class RandPadParam:
        short = 1200
        long = 2000
        max_num_gt = 100

    class RenameParam:
        mapping = dict(image="data")

    from core.detection_input import ReadRoiRecord, \
        RandResize2DImageBbox, RandCrop2DImageBbox, Resize2DImageByRoidb, \
        ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
        RenameRecord
    from models.retinanet.input import Norm2DImage

    if is_train:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            # Resize2DImageBbox(ResizeParam),
            RandResize2DImageBbox(RandResizeParam),
            RandCrop2DImageBbox(RandCropParam),
            Flip2DImageBbox(),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data"]
        label_name = ["gt_bbox"]
    else:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            # Resize2DImageBbox(ResizeParam),
            Resize2DImageByRoidb(),
            Pad2DImageBbox(RandPadParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "im_id", "rec_id"]
        label_name = []

    from models.retinanet import metric as cls_metric
    import core.detection_metric as box_metric

    cls_acc_metric = cls_metric.FGAccMetric(
        "FGAcc", ["cls_loss_output", "point_refine_labels_output"], [])
    box_init_l1_metric = box_metric.L1(
        "InitL1", ["pts_init_loss_output", "points_init_labels_output"], [])
    box_refine_l1_metric = box_metric.L1(
        "RefineL1", ["pts_refine_loss_output", "point_refine_labels_output"],
        [])

    metric_list = [cls_acc_metric, box_init_l1_metric, box_refine_l1_metric]

    return General, KvstoreParam, HeadParam, RoiParam, BboxParam, DatasetParam, \
        ModelParam, OptimizeParam, TestParam, \
        transform, data_name, label_name, metric_list
def get_config(is_train):
    class General:
        log_frequency = 10
        name = __name__.rsplit("/")[-1].rsplit(".")[-1]
        batch_image = 2 if is_train else 1
        fp16 = False

    class KvstoreParam:
        kvstore = "local"
        batch_image = General.batch_image
        gpus = [0, 1, 2, 3, 4, 5, 6, 7]
        fp16 = General.fp16

    class NormalizeParam:
        # normalizer = normalizer_factory(type="syncbn", ndev=len(KvstoreParam.gpus))
        normalizer = normalizer_factory(type="fixbn")

    class BackboneParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        depth = 101
        num_c3_block = 4
        num_c4_block = 23

    class NeckParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class RpnParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        batch_image = General.batch_image

        class anchor_generate:
            scale = (2, 4, 8, 16, 32)
            ratio = (0.5, 1.0, 2.0)
            stride = 16
            image_anchor = 256

        class head:
            conv_channel = 512
            mean = (0, 0, 0, 0)
            std = (1, 1, 1, 1)

        class proposal:
            pre_nms_top_n = 12000 if is_train else 6000
            post_nms_top_n = 2000 if is_train else 300
            nms_thr = 0.7
            min_bbox_side = 0

        class subsample_proposal:
            proposal_wo_gt = False
            image_roi = 512
            fg_fraction = 0.25
            fg_thr = 0.5
            bg_thr_hi = 0.5
            bg_thr_lo = 0.0

        class bbox_target:
            num_reg_class = 2
            class_agnostic = True
            weight = (1.0, 1.0, 1.0, 1.0)
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.1, 0.1, 0.2, 0.2)

    class BboxParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = 1 + 80
        image_roi = 512
        batch_image = General.batch_image

        class regress_target:
            class_agnostic = True
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.1, 0.1, 0.2, 0.2)

    class RoiParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        out_size = 7
        stride = 16

    class DatasetParam:
        if is_train:
            image_set = ("coco_train2017", )
        else:
            image_set = ("coco_val2017", )

    backbone = Backbone(BackboneParam)
    neck = Neck(NeckParam)
    rpn_head = RpnHead(RpnParam)
    roi_extractor = RoiExtractor(RoiParam)
    bbox_head = BboxHead(BboxParam)
    detector = Detector()
    if is_train:
        train_sym = detector.get_train_symbol(backbone, neck, rpn_head,
                                              roi_extractor, bbox_head)
        rpn_test_sym = None
        test_sym = None
    else:
        train_sym = None
        rpn_test_sym = detector.get_rpn_test_symbol(backbone, neck, rpn_head)
        test_sym = detector.get_test_symbol(backbone, neck, rpn_head,
                                            roi_extractor, bbox_head)

    class ModelParam:
        train_symbol = train_sym
        test_symbol = test_sym
        rpn_test_symbol = rpn_test_sym

        from_scratch = False
        random = True
        memonger = False
        memonger_until = "stage3_unit21_plus"

        class pretrain:
            prefix = "pretrain_model/resnet%s_v1b" % BackboneParam.depth
            epoch = 0
            fixed_param = ["conv0", "stage1", "gamma", "beta"]

    class OptimizeParam:
        class optimizer:
            type = "sgd"
            lr = 0.01 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            momentum = 0.9
            wd = 0.0001
            clip_gradient = 35

        class schedule:
            begin_epoch = 0
            end_epoch = 6
            lr_iter = [
                60000 * 16 //
                (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 *
                16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
            ]

        class warmup:
            type = "gradual"
            lr = 0.0
            iter = 2000

    class TestParam:
        min_det_score = 0.05
        max_det_per_image = 100

        process_roidb = lambda x: x
        process_output = lambda x, y: x

        class model:
            prefix = "experiments/{}/checkpoint".format(General.name)
            epoch = OptimizeParam.schedule.end_epoch

        class nms:
            type = "nms"
            thr = 0.5

        class coco:
            annotation = "data/coco/annotations/instances_minival2014.json"

    # data processing
    class NormParam:
        mean = tuple(i * 255 for i in (0.485, 0.456, 0.406))  # RGB order
        std = tuple(i * 255 for i in (0.229, 0.224, 0.225))

    class ResizeParam:
        short = 800
        long = 1200 if is_train else 2000

    class PadParam:
        short = 800
        long = 1200
        max_num_gt = 100

    class AnchorTarget2DParam:
        class generate:
            short = 800 // 16
            long = 1200 // 16
            stride = 16
            scales = (2, 4, 8, 16, 32)
            aspects = (0.5, 1.0, 2.0)

        class assign:
            allowed_border = 0
            pos_thr = 0.7
            neg_thr = 0.3
            min_pos_thr = 0.0

        class sample:
            image_anchor = 256
            pos_fraction = 0.5

    class RenameParam:
        mapping = dict(image="data")


    from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
        ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
        RenameRecord, AnchorTarget2D, Norm2DImage

    if is_train:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            Flip2DImageBbox(),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            AnchorTarget2D(AnchorTarget2DParam),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "gt_bbox"]
        label_name = ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"]
    else:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "im_id", "rec_id"]
        label_name = []

    import core.detection_metric as metric

    rpn_acc_metric = metric.AccWithIgnore("RpnAcc", ["rpn_cls_loss_output"],
                                          ["rpn_cls_label"])
    rpn_l1_metric = metric.L1("RpnL1", ["rpn_reg_loss_output"],
                              ["rpn_cls_label"])
    # for bbox, the label is generated in network so it is an output
    box_acc_metric = metric.AccWithIgnore(
        "RcnnAcc", ["bbox_cls_loss_output", "bbox_label_blockgrad_output"], [])
    box_l1_metric = metric.L1(
        "RcnnL1", ["bbox_reg_loss_output", "bbox_label_blockgrad_output"], [])

    metric_list = [
        rpn_acc_metric, rpn_l1_metric, box_acc_metric, box_l1_metric
    ]

    return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
           ModelParam, OptimizeParam, TestParam, \
           transform, data_name, label_name, metric_list
def get_config(is_train):
    class General:
        log_frequency = 10
        name = __name__.rsplit("/")[-1].rsplit(".")[-1]
        batch_image = 2 if is_train else 1
        fp16 = False
        long_side = 1280
        short_side = 960

    class KvstoreParam:
        kvstore = "local"
        batch_image = General.batch_image
        gpus = [0, 1, 2, 3, 4, 5, 6, 7]
        fp16 = General.fp16

    class NormalizeParam:
        # normalizer = normalizer_factory(type="syncbn", ndev=len(KvstoreParam.gpus))
        normalizer = normalizer_factory(type="fixbn")

    class BackboneParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        depth = 50

    class NeckParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class RpnParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        batch_image = General.batch_image
        nnvm_proposal = True
        nnvm_rpn_target = False
        use_symbolic_proposal = None

        class anchor_generate:
            scale = (8, )
            ratio = (0.5, 1.0, 2.0)
            stride = (4, 8, 16, 32, 64)
            image_anchor = 256
            max_side = 1280

        class anchor_assign:
            allowed_border = 0
            pos_thr = 0.7
            neg_thr = 0.3
            min_pos_thr = 0.3
            image_anchor = 256
            pos_fraction = 0.5

        class head:
            conv_channel = 256
            mean = (0, 0, 0, 0)
            std = (1, 1, 1, 1)

        class proposal:
            pre_nms_top_n = 2000 if is_train else 1000
            post_nms_top_n = 2000 if is_train else 1000
            nms_thr = 0.7
            min_bbox_side = 0

        class subsample_proposal:
            proposal_wo_gt = False
            image_roi = 512
            fg_fraction = 0.25
            fg_thr = 0.5
            bg_thr_hi = 0.5
            bg_thr_lo = 0.5

        class bbox_target:
            num_reg_class = 2
            class_agnostic = True
            weight = (1.0, 1.0, 1.0, 1.0)
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.1, 0.1, 0.2, 0.2)

    class BboxParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = 1 + 54
        image_roi = 512
        batch_image = General.batch_image
        stage = "1st"
        loss_weight = 1.0

        class regress_target:
            class_agnostic = True
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.1, 0.1, 0.2, 0.2)

        class subsample_proposal:
            proposal_wo_gt = False
            image_roi = 512
            fg_fraction = 0.25
            fg_thr = 0.6
            bg_thr_hi = 0.6
            bg_thr_lo = 0.6

        class bbox_target:
            num_reg_class = 2
            class_agnostic = True
            weight = (1.0, 1.0, 1.0, 1.0)
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.1, 0.1, 0.2, 0.2)

    class BboxParam2nd:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = 1 + 54
        image_roi = 512
        batch_image = General.batch_image
        stage = "2nd"
        loss_weight = 0.5

        class regress_target:
            class_agnostic = True
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.05, 0.05, 0.1, 0.1)

        class subsample_proposal:
            proposal_wo_gt = False
            image_roi = 512
            fg_fraction = 0.25
            fg_thr = 0.7
            bg_thr_hi = 0.7
            bg_thr_lo = 0.7

        class bbox_target:
            num_reg_class = 2
            class_agnostic = True
            weight = (1.0, 1.0, 1.0, 1.0)
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.05, 0.05, 0.1, 0.1)

    class BboxParam3rd:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = 1 + 54
        image_roi = 512
        batch_image = General.batch_image
        stage = "3rd"
        loss_weight = 0.25

        class regress_target:
            class_agnostic = True
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.033, 0.033, 0.067, 0.067)

        class subsample_proposal:
            proposal_wo_gt = None
            image_roi = None
            fg_fraction = None
            fg_thr = None
            bg_thr_hi = None
            bg_thr_lo = None

        class bbox_target:
            num_reg_class = None
            class_agnostic = None
            weight = None
            mean = None
            std = None

    class RoiParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        out_size = 7
        stride = (4, 8, 16, 32)
        roi_canonical_scale = 224
        roi_canonical_level = 4

    class DatasetParam:
        if is_train:
            image_set = ("vending_train", )
        else:
            image_set = ("coco_val2017", )

    backbone = Backbone(BackboneParam)
    neck = Neck(NeckParam)
    rpn_head = RpnHead(RpnParam)
    roi_extractor = RoiExtractor(RoiParam)
    bbox_head = BboxHead(BboxParam)
    bbox_head_2nd = BboxHead(BboxParam2nd)
    bbox_head_3rd = BboxHead(BboxParam3rd)
    detector = Detector()
    if is_train:
        train_sym = detector.get_train_symbol(backbone, neck, rpn_head,
                                              roi_extractor, bbox_head,
                                              bbox_head_2nd, bbox_head_3rd)
        rpn_test_sym = None
        test_sym = None
    else:
        train_sym = None
        rpn_test_sym = detector.get_rpn_test_symbol(backbone, neck, rpn_head)
        test_sym = detector.get_test_symbol(backbone, neck, rpn_head,
                                            roi_extractor, bbox_head,
                                            bbox_head_2nd, bbox_head_3rd)

    class ModelParam:
        train_symbol = train_sym
        test_symbol = test_sym
        rpn_test_symbol = rpn_test_sym

        from_scratch = False
        random = True
        memonger = False
        memonger_until = "stage3_unit21_plus"

        class pretrain:
            prefix = "pretrain_model/resnet-v1-50"
            epoch = 0
            fixed_param = ["conv0", "stage1", "gamma", "beta"]

        def process_weight(sym, arg, aux):
            for stride in RpnParam.anchor_generate.stride:
                add_anchor_to_arg(sym, arg, aux,
                                  RpnParam.anchor_generate.max_side, stride,
                                  RpnParam.anchor_generate.scale,
                                  RpnParam.anchor_generate.ratio)

        class QuantizeTrainingParam:
            quantize_flag = False
            # quantized_op = ("Convolution", "FullyConnected", "Deconvolution","Concat", "Pooling", "add_n", "elemwise_add")
            quantized_op = ("Convolution", "FullyConnected", "Deconvolution")

            class WeightQuantizeParam:
                delay_quant = 0
                ema_decay = 0.99
                grad_mode = "ste"
                is_weight = True
                is_weight_perchannel = False
                quant_mode = "minmax"

            class ActQuantizeParam:
                delay_quant = 0
                ema_decay = 0.99
                grad_mode = "ste"
                is_weight = False
                is_weight_perchannel = False
                quant_mode = "minmax"

    class OptimizeParam:
        class optimizer:
            type = "sgd"
            lr = 0.01 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            momentum = 0.9
            wd = 0.0001
            clip_gradient = None

        class schedule:
            begin_epoch = 0
            end_epoch = 6
            lr_iter = [
                60000 * 16 //
                (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 *
                16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
            ]

        class warmup:
            type = "gradual"
            lr = 0.01 / 8 * len(
                KvstoreParam.gpus) * KvstoreParam.batch_image / 3.0
            iter = 500

    class TestParam:
        min_det_score = 0.05
        max_det_per_image = 100

        process_roidb = lambda x: x
        process_output = lambda x, y: x

        class model:
            prefix = "experiments/{}/checkpoint".format(General.name)
            epoch = OptimizeParam.schedule.end_epoch

        class nms:
            type = "nms"
            thr = 0.6

        class coco:
            annotation = "data/coco/annotations/instances_val2017.json"

    # data processing
    class NormParam:
        mean = (123.675, 116.28, 103.53)  # RGB order
        std = (58.395, 57.12, 57.375)

    # data processing
    class ResizeParam:
        short = 960
        long = 1280

    class PadParam:
        short = 960
        long = 1280
        max_num_gt = 100

    class AnchorTarget2DParam:
        def __init__(self):
            self.generate = self._generate()
            self.mean = (0, 0, 0, 0)
            self.std = (1, 1, 1, 1)

        class _generate:
            def __init__(self):
                self.stride = (4, 8, 16, 32, 64)
                self.short = (240, 120, 60, 30, 15)
                self.long = (320, 160, 80, 40, 20)

            scales = (8, )
            aspects = (0.5, 1.0, 2.0)

        class assign:
            allowed_border = 0
            pos_thr = 0.7
            neg_thr = 0.3
            min_pos_thr = 0.3

        class sample:
            image_anchor = 256
            pos_fraction = 0.5

    class RenameParam:
        mapping = dict(image="data")


    from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
        ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
        RenameRecord, Norm2DImage

    from models.FPN.input import PyramidAnchorTarget2D

    if is_train:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            Flip2DImageBbox(),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data"]
        label_name = ["gt_bbox", "im_info"]
        if not RpnParam.nnvm_rpn_target:
            transform.append(PyramidAnchorTarget2D(AnchorTarget2DParam()))
            label_name += ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"]
    else:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "im_id", "rec_id"]
        label_name = []

    import core.detection_metric as metric

    rpn_acc_metric = metric.AccWithIgnore(
        "RpnAcc", ["rpn_cls_loss_output", "rpn_cls_label_blockgrad_output"],
        [])
    rpn_l1_metric = metric.L1(
        "RpnL1", ["rpn_reg_loss_output", "rpn_cls_label_blockgrad_output"], [])
    # for bbox, the label is generated in network so it is an output
    # stage1 metric
    box_acc_metric_1st = metric.AccWithIgnore(
        "RcnnAcc_1st",
        ["bbox_cls_loss_1st_output", "bbox_label_blockgrad_1st_output"], [])
    box_l1_metric_1st = metric.L1(
        "RcnnL1_1st",
        ["bbox_reg_loss_1st_output", "bbox_label_blockgrad_1st_output"], [])
    # stage2 metric
    box_acc_metric_2nd = metric.AccWithIgnore(
        "RcnnAcc_2nd",
        ["bbox_cls_loss_2nd_output", "bbox_label_blockgrad_2nd_output"], [])
    box_l1_metric_2nd = metric.L1(
        "RcnnL1_2nd",
        ["bbox_reg_loss_2nd_output", "bbox_label_blockgrad_2nd_output"], [])
    # stage3 metric
    box_acc_metric_3rd = metric.AccWithIgnore(
        "RcnnAcc_3rd",
        ["bbox_cls_loss_3rd_output", "bbox_label_blockgrad_3rd_output"], [])
    box_l1_metric_3rd = metric.L1(
        "RcnnL1_3rd",
        ["bbox_reg_loss_3rd_output", "bbox_label_blockgrad_3rd_output"], [])

    metric_list = [
        rpn_acc_metric, rpn_l1_metric, box_acc_metric_1st, box_l1_metric_1st,
        box_acc_metric_2nd, box_l1_metric_2nd, box_acc_metric_3rd,
        box_l1_metric_3rd
    ]

    return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
           ModelParam, OptimizeParam, TestParam, \
           transform, data_name, label_name, metric_list