def postprocess(outputs, nested_test_image, args): image_shape = nested_test_image.tensors.shape[2:] postprocessor = PostProcess() results = postprocessor(outputs, dg.to_variable([image_shape])) image = plot_results(nested_test_image.tensors[0], results[0]) output_path = args.output_dir + '/' + args.demo_image.split('/')[-1] cv2.imwrite(output_path, image)
def invoice(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR R50 with 6 encoder and 6 decoder layers. """ model = _make_detr("resnet50", dilation=False, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="invoice_large_transfer/checkpoint.pth", map_location="cpu", check_hash=True) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model
def detr_resnet101(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. Achieves 43.5/63.8 AP/AP50 on COCO val5k. """ model = _make_detr("resnet101", dilation=False, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-2c7b67e5.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model
def detr_resnet101(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. Achieves 43.5/63.8 AP/AP50 on COCO val5k. """ model = _make_detr('resnet101', dilation=False, num_classes=num_classes) if pretrained: checkpoint = paddle.load( 'https://dl.fbaipublicfiles.com/detr/detr-r101-2c7b67e5.pdiparams') model.load_state_dict(checkpoint['model']) if return_postprocessor: return model, PostProcess() return model
def detr_resnet50(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR R50 with 6 encoder and 6 decoder layers. Achieves 42/62.4 AP/AP50 on COCO val5k. """ model = _make_detr('resnet50', dilation=False, num_classes=num_classes) if pretrained: checkpoint = paddle.load( 'https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pdiparams') model.load_state_dict(checkpoint['model']) if return_postprocessor: return model, PostProcess() return model
def detr_resnet101_dc5(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. The last block of ResNet-101 has dilation to increase output resolution. Achieves 44.9/64.7 AP/AP50 on COCO val5k. """ model = _make_detr("resnet101", dilation=True, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-dc5-a2e86def.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model
def detr_resnet50(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR R50 with 6 encoder and 6 decoder layers. Achieves 42/62.4 AP/AP50 on COCO val5k. """ model = _make_detr("resnet50", dilation=False, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth", map_location="cpu", check_hash=False) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model
def detr_resnet101_dc5(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. The last block of ResNet-101 has dilation to increase output resolution. Achieves 44.9/64.7 AP/AP50 on COCO val5k. """ model = _make_detr('resnet101', dilation=True, num_classes=num_classes) if pretrained: checkpoint = paddle.load( 'https://dl.fbaipublicfiles.com/detr/detr-r101-dc5-a2e86def.pdiparams' ) model.load_state_dict(checkpoint['model']) if return_postprocessor: return model, PostProcess() return model
pre_norm = False num_classes = 3 num_queries = 100 aux_loss = True backbone = build_backbone(lr_backbone, masks, backbone, dilation, hidden_dim, position_embedding) transformer = build_transformer(hidden_dim, dropout, nheads, dim_feedforward, enc_layers, dec_layers, pre_norm) model = DETR( backbone, transformer, num_classes=num_classes, num_queries=num_queries, aux_loss=aux_loss, ) transform = make_coco_transforms() postprocessors = PostProcess() checkpoint = torch.load('/home/palm/PycharmProjects/detr/snapshots/1/checkpoint00295.pth') model.load_state_dict(checkpoint['model']) train_ints, valid_ints, labels, max_box_per_image = create_csv_training_instances( '/home/palm/PycharmProjects/algea/dataset/train_annotations', '/home/palm/PycharmProjects/algea/dataset/test_annotations', '/home/palm/PycharmProjects/algea/dataset/classes', ) # os.listdir() all_detections = [] all_annotations = [] model.cuda() for instance in valid_ints: t = time.time()
aux_loss=args.aux_loss, ) matcher = HungarianMatcher(cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou) weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef} weight_dict['loss_giou'] = args.giou_loss_coef if args.aux_loss: aux_weight_dict = {} for i in range(args.dec_layers - 1): aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ['labels', 'boxes', 'cardinality'] criterion = SetCriterion(args.num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=args.eos_coef, losses=losses) postprocessors = {'bbox': PostProcess()} criterion.to(device) model.to(device) # %% set distributed model model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters) # %% set optimizer param_dicts = [ {"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
def build_model(args): num_classes = 20 if args.dataset_file != 'coco' else 91 if args.dataset_file == "coco_panoptic": num_classes = 250 if args.dataset_file == "ImageNet": num_classes = 2 # feel free to this num_classes, positive integer larger than 1 is OK. device = torch.device(args.device) backbone = build_backbone(args) transformer = build_transformer(args) if args.dataset_file == "ImageNet": model = UPDETR(backbone, transformer, num_classes=num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, num_patches=args.num_patches, feature_recon=args.feature_recon, query_shuffle=args.query_shuffle) else: model = DETR( backbone, transformer, num_classes=num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, ) if args.masks: model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None)) matcher = build_matcher(args) weight_dict = { 'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef, 'loss_giou': args.giou_loss_coef } if args.dataset_file == 'ImageNet' and args.feature_recon: weight_dict['loss_feature'] = 1 if args.masks: weight_dict["loss_mask"] = args.mask_loss_coef weight_dict["loss_dice"] = args.dice_loss_coef # TODO this is a hack if args.aux_loss: aux_weight_dict = {} for i in range(args.dec_layers - 1): aux_weight_dict.update( {k + f'_{i}': v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ['labels', 'boxes', 'cardinality'] if args.dataset_file == 'ImageNet' and args.feature_recon: losses += ['feature'] if args.masks: losses += ["masks"] criterion = SetCriterion(num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=args.eos_coef, losses=losses) criterion.to(device) postprocessors = {'bbox': PostProcess()} if args.masks: postprocessors['segm'] = PostProcessSegm() if args.dataset_file == "coco_panoptic": is_thing_map = {i: i <= 90 for i in range(201)} postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85) return model, criterion, postprocessors