def __init__(self, cfg): super().__init__() self.device = torch.device(cfg.MODEL.DEVICE) self.num_classes = cfg.MODEL.DETR.NUM_CLASSES hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES # Transformer parameters: nheads = cfg.MODEL.DETR.NHEADS dropout = cfg.MODEL.DETR.DROPOUT dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD enc_layers = cfg.MODEL.DETR.ENC_LAYERS dec_layers = cfg.MODEL.DETR.DEC_LAYERS pre_norm = cfg.MODEL.DETR.PRE_NORM pass_pos_and_query = cfg.MODEL.DETR.PASS_POS_AND_QUERY # Loss parameters: giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT l1_weight = cfg.MODEL.DETR.L1_WEIGHT deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION no_object_weight = cfg.MODEL.DETR.NO_OBJECT_WEIGHT N_steps = hidden_dim // 2 d2_backbone = MaskedBackbone(cfg) backbone = Joiner(d2_backbone, PositionEmbeddingSine(N_steps, normalize=True)) backbone.num_channels = d2_backbone.num_channels transformer = Transformer( d_model=hidden_dim, dropout=dropout, nhead=nheads, dim_feedforward=dim_feedforward, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, normalize_before=pre_norm, return_intermediate_dec=deep_supervision, pass_pos_and_query=pass_pos_and_query, ) self.detr = DETR(backbone, transformer, num_classes=self.num_classes, num_queries=num_queries, aux_loss=deep_supervision) self.detr.to(self.device) # building criterion matcher = HungarianMatcher(cost_class=1, cost_bbox=l1_weight, cost_giou=giou_weight) weight_dict = {"loss_ce": 1, "loss_bbox": l1_weight} weight_dict["loss_giou"] = giou_weight if deep_supervision: aux_weight_dict = {} for i in range(dec_layers - 1): aux_weight_dict.update( {k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ["labels", "boxes", "cardinality"] self.criterion = SetCriterion(self.num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=no_object_weight, losses=losses) self.criterion.to(self.device) pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view( 3, 1, 1) pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view( 3, 1, 1) self.normalizer = lambda x: (x - pixel_mean) / pixel_std self.to(self.device)
class Detr(nn.Module): """ Implement Detr """ def __init__(self, cfg): super().__init__() self.device = torch.device(cfg.MODEL.DEVICE) self.num_classes = cfg.MODEL.DETR.NUM_CLASSES hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES # Transformer parameters: nheads = cfg.MODEL.DETR.NHEADS dropout = cfg.MODEL.DETR.DROPOUT dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD enc_layers = cfg.MODEL.DETR.ENC_LAYERS dec_layers = cfg.MODEL.DETR.DEC_LAYERS pre_norm = cfg.MODEL.DETR.PRE_NORM pass_pos_and_query = cfg.MODEL.DETR.PASS_POS_AND_QUERY # Loss parameters: giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT l1_weight = cfg.MODEL.DETR.L1_WEIGHT deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION no_object_weight = cfg.MODEL.DETR.NO_OBJECT_WEIGHT N_steps = hidden_dim // 2 d2_backbone = MaskedBackbone(cfg) backbone = Joiner(d2_backbone, PositionEmbeddingSine(N_steps, normalize=True)) backbone.num_channels = d2_backbone.num_channels transformer = Transformer( d_model=hidden_dim, dropout=dropout, nhead=nheads, dim_feedforward=dim_feedforward, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, normalize_before=pre_norm, return_intermediate_dec=deep_supervision, pass_pos_and_query=pass_pos_and_query, ) self.detr = DETR(backbone, transformer, num_classes=self.num_classes, num_queries=num_queries, aux_loss=deep_supervision) self.detr.to(self.device) # building criterion matcher = HungarianMatcher(cost_class=1, cost_bbox=l1_weight, cost_giou=giou_weight) weight_dict = {"loss_ce": 1, "loss_bbox": l1_weight} weight_dict["loss_giou"] = giou_weight if deep_supervision: aux_weight_dict = {} for i in range(dec_layers - 1): aux_weight_dict.update( {k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ["labels", "boxes", "cardinality"] self.criterion = SetCriterion(self.num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=no_object_weight, losses=losses) self.criterion.to(self.device) pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view( 3, 1, 1) pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view( 3, 1, 1) self.normalizer = lambda x: (x - pixel_mean) / pixel_std self.to(self.device) def forward(self, batched_inputs): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances: Instances Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: dict[str: Tensor]: mapping from a named loss to a tensor storing the loss. Used during training only. """ images = self.preprocess_image(batched_inputs) output = self.detr(images) if self.training: gt_instances = [ x["instances"].to(self.device) for x in batched_inputs ] targets = self.prepare_targets(gt_instances) loss_dict = self.criterion(output, targets) weight_dict = self.criterion.weight_dict for k in loss_dict.keys(): if k in weight_dict: loss_dict[k] *= weight_dict[k] return loss_dict else: box_cls = output["pred_logits"] box_pred = output["pred_boxes"] results = self.inference(box_cls, box_pred, images.image_sizes) processed_results = [] for results_per_image, input_per_image, image_size in zip( results, batched_inputs, images.image_sizes): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"instances": r}) return processed_results def prepare_targets(self, targets): new_targets = [] for targets_per_image in targets: h, w = targets_per_image.image_size image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device) gt_classes = targets_per_image.gt_classes gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy gt_boxes = box_xyxy_to_cxcywh(gt_boxes) new_targets.append({"labels": gt_classes, "boxes": gt_boxes}) return new_targets def inference(self, box_cls, box_pred, image_sizes): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_queries, K). The tensor predicts the classification probability for each query. box_pred (Tensor): tensors of shape (batch_size, num_queries, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every queryx image_sizes (List[torch.Size]): the input image sizes Returns: results (List[Instances]): a list of #images elements. """ assert len(box_cls) == len(image_sizes) results = [] # For each box we assign the best class or the second best if the best on is `no_object`. scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1) for scores_per_image, labels_per_image, box_pred_per_image, image_size in zip( scores, labels, box_pred, image_sizes): result = Instances(image_size) result.pred_boxes = Boxes(box_cxcywh_to_xyxy(box_pred_per_image)) result.pred_boxes.scale(scale_x=image_size[1], scale_y=image_size[0]) result.scores = scores_per_image result.pred_classes = labels_per_image results.append(result) return results def preprocess_image(self, batched_inputs): """ Normalize, pad and batch the input images. """ images = [ self.normalizer(x["image"].to(self.device)) for x in batched_inputs ] images = ImageList.from_tensors(images) return images
def __init__(self, cfg): super().__init__() self.device = torch.device(cfg.MODEL.DEVICE) self.num_classes = cfg.MODEL.DETR.NUM_CLASSES self.mask_on = cfg.MODEL.MASK_ON hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES # Transformer parameters: nheads = cfg.MODEL.DETR.NHEADS dropout = cfg.MODEL.DETR.DROPOUT dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD enc_layers = cfg.MODEL.DETR.ENC_LAYERS dec_layers = cfg.MODEL.DETR.DEC_LAYERS pre_norm = cfg.MODEL.DETR.PRE_NORM # Loss parameters: giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT l1_weight = cfg.MODEL.DETR.L1_WEIGHT deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION no_object_weight = cfg.MODEL.DETR.NO_OBJECT_WEIGHT N_steps = hidden_dim // 2 d2_backbone = MaskedBackbone(cfg) backbone = Joiner(d2_backbone, PositionEmbeddingSine(N_steps, normalize=True)) backbone.num_channels = d2_backbone.num_channels transformer = Transformer( d_model=hidden_dim, dropout=dropout, nhead=nheads, dim_feedforward=dim_feedforward, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, normalize_before=pre_norm, return_intermediate_dec=deep_supervision, ) self.detr = DETR(backbone, transformer, num_classes=self.num_classes, num_queries=num_queries, aux_loss=deep_supervision) if self.mask_on: frozen_weights = cfg.MODEL.DETR.FROZEN_WEIGHTS if frozen_weights != '': print("LOAD pre-trained weights") weight = torch.load( frozen_weights, map_location=lambda storage, loc: storage)['model'] new_weight = {} for k, v in weight.items(): if 'detr.' in k: new_weight[k.replace('detr.', '')] = v else: print(f"Skipping loading weight {k} from frozen model") del weight self.detr.load_state_dict(new_weight) del new_weight self.detr = DETRsegm(self.detr, freeze_detr=(frozen_weights != '')) self.seg_postprocess = PostProcessSegm self.detr.to(self.device) # building criterion matcher = HungarianMatcher(cost_class=1, cost_bbox=l1_weight, cost_giou=giou_weight) weight_dict = {"loss_ce": 1, "loss_bbox": l1_weight} weight_dict["loss_giou"] = giou_weight if deep_supervision: aux_weight_dict = {} for i in range(dec_layers - 1): aux_weight_dict.update( {k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ["labels", "boxes", "cardinality"] if self.mask_on: losses += ["masks"] self.criterion = SetCriterion( self.num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=no_object_weight, losses=losses, ) self.criterion.to(self.device) pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view( 3, 1, 1) pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view( 3, 1, 1) self.normalizer = lambda x: (x - pixel_mean) / pixel_std self.to(self.device)
class Detr(nn.Layer): """ Implement Detr """ def __init__(self, cfg): super().__init__() self.device = cfg.MODEL.DEVICE self.device = self.device.replace('cuda', 'gpu') self.device = paddle.set_device(self.device) self.num_classes = cfg.MODEL.DETR.NUM_CLASSES self.mask_on = cfg.MODEL.MASK_ON hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES nheads = cfg.MODEL.DETR.NHEADS dropout = cfg.MODEL.DETR.DROPOUT dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD enc_layers = cfg.MODEL.DETR.ENC_LAYERS dec_layers = cfg.MODEL.DETR.DEC_LAYERS pre_norm = cfg.MODEL.DETR.PRE_NORM giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT l1_weight = cfg.MODEL.DETR.L1_WEIGHT deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION no_object_weight = cfg.MODEL.DETR.NO_OBJECT_WEIGHT N_steps = hidden_dim // 2 d2_backbone = MaskedBackbone(cfg) backbone = Joiner(d2_backbone, PositionEmbeddingSine(N_steps, normalize=True)) backbone.num_channels = d2_backbone.num_channels transformer = Transformer(d_model=hidden_dim, dropout=dropout, nhead=nheads, dim_feedforward=dim_feedforward, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, normalize_before=pre_norm, return_intermediate_dec=deep_supervision) self.detr = DETR(backbone, transformer, num_classes=self.num_classes, num_queries=num_queries, aux_loss=deep_supervision) if self.mask_on: frozen_weights = cfg.MODEL.DETR.FROZEN_WEIGHTS if frozen_weights != '': print('LOAD pre-trained weights') weight = paddle.load(frozen_weights)['model'] new_weight = {} for k, v in weight.items(): if 'detr.' in k: new_weight[k.replace('detr.', '')] = v else: print(f'Skipping loading weight {k} from frozen model') del weight self.detr.load_state_dict(new_weight) del new_weight self.detr = DETRsegm(self.detr, freeze_detr=frozen_weights != '') self.seg_postprocess = PostProcessSegm self.detr.to(self.device) matcher = HungarianMatcher(cost_class=1, cost_bbox=l1_weight, cost_giou=giou_weight) weight_dict = {'loss_ce': 1, 'loss_bbox': l1_weight} weight_dict['loss_giou'] = giou_weight if deep_supervision: aux_weight_dict = {} for i in range(dec_layers - 1): aux_weight_dict.update({(k + f'_{i}'): v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ['labels', 'boxes', 'cardinality'] if self.mask_on: losses += ['masks'] self.criterion = SetCriterion(self.num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=no_object_weight, losses=losses) self.criterion.to(self.device) pixel_mean = torch2paddle.create_tensor(cfg.MODEL.PIXEL_MEAN).to( self.device).view(3, 1, 1) pixel_std = torch2paddle.create_tensor(cfg.MODEL.PIXEL_STD).to( self.device).view(3, 1, 1) self.normalizer = lambda x: (x - pixel_mean) / pixel_std self.to(self.device) def forward(self, batched_inputs): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances: Instances Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: dict[str: Tensor]: mapping from a named loss to a tensor storing the loss. Used during training only. """ images = self.preprocess_image(batched_inputs) output = self.detr(images) if self.training: gt_instances = [ x['instances'].to(self.device) for x in batched_inputs ] targets = self.prepare_targets(gt_instances) loss_dict = self.criterion(output, targets) weight_dict = self.criterion.weight_dict for k in loss_dict.keys(): if k in weight_dict: loss_dict[k] *= weight_dict[k] return loss_dict else: box_cls = output['pred_logits'] box_pred = output['pred_boxes'] mask_pred = output['pred_masks'] if self.mask_on else None results = self.inference(box_cls, box_pred, mask_pred, images.image_sizes) processed_results = [] for results_per_image, input_per_image, image_size in zip( results, batched_inputs, images.image_sizes): height = input_per_image.get('height', image_size[0]) width = input_per_image.get('width', image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({'instances': r}) return processed_results def prepare_targets(self, targets): new_targets = [] for targets_per_image in targets: h, w = targets_per_image.image_size image_size_xyxy = paddle.to_tensor([w, h, w, h], dtype=torch.float, device=self.device) gt_classes = targets_per_image.gt_classes gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy gt_boxes = box_xyxy_to_cxcywh(gt_boxes) new_targets.append({'labels': gt_classes, 'boxes': gt_boxes}) if self.mask_on and hasattr(targets_per_image, 'gt_masks'): gt_masks = targets_per_image.gt_masks gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w) new_targets[-1].update({'masks': gt_masks}) return new_targets def inference(self, box_cls, box_pred, mask_pred, image_sizes): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_queries, K). The tensor predicts the classification probability for each query. box_pred (Tensor): tensors of shape (batch_size, num_queries, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every queryx image_sizes (List[torch.Size]): the input image sizes Returns: results (List[Instances]): a list of #images elements. """ assert len(box_cls) == len(image_sizes) results = [] scores, labels = F.softmax(box_cls, axis=-1)[:, :, :-1].max(-1) for i, (scores_per_image, labels_per_image, box_pred_per_image, image_size) in enumerate( zip(scores, labels, box_pred, image_sizes)): result = Instances(image_size) result.pred_boxes = Boxes(box_cxcywh_to_xyxy(box_pred_per_image)) result.pred_boxes.scale(scale_x=image_size[1], scale_y=\ image_size[0]) if self.mask_on: mask = F.interpolate(mask_pred[i].unsqueeze(0), size=\ image_size, mode='bilinear', align_corners=False) mask = mask[0].sigmoid() > 0.5 B, N, H, W = mask_pred.shape mask = BitMasks(mask.cpu()).crop_and_resize( result.pred_boxes.tensor.cpu(), 32) result.pred_masks = mask.unsqueeze(1).to(mask_pred[0].device) result.scores = scores_per_image result.pred_classes = labels_per_image results.append(result) return results def preprocess_image(self, batched_inputs): """ Normalize, pad and batch the input images. """ images = [ self.normalizer(x['image'].to(self.device)) for x in batched_inputs ] images = ImageList.from_tensors(images) return images
num_classes=args.num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, ) matcher = HungarianMatcher(cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou) weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef} weight_dict['loss_giou'] = args.giou_loss_coef if args.aux_loss: aux_weight_dict = {} for i in range(args.dec_layers - 1): aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ['labels', 'boxes', 'cardinality'] criterion = SetCriterion(args.num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=args.eos_coef, losses=losses) postprocessors = {'bbox': PostProcess()} criterion.to(device) model.to(device) # %% set distributed model model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters) # %% set optimizer param_dicts = [
def build_model(args): num_classes = 20 if args.dataset_file != 'coco' else 91 if args.dataset_file == "coco_panoptic": num_classes = 250 if args.dataset_file == "ImageNet": num_classes = 2 # feel free to this num_classes, positive integer larger than 1 is OK. device = torch.device(args.device) backbone = build_backbone(args) transformer = build_transformer(args) if args.dataset_file == "ImageNet": model = UPDETR(backbone, transformer, num_classes=num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, num_patches=args.num_patches, feature_recon=args.feature_recon, query_shuffle=args.query_shuffle) else: model = DETR( backbone, transformer, num_classes=num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, ) if args.masks: model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None)) matcher = build_matcher(args) weight_dict = { 'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef, 'loss_giou': args.giou_loss_coef } if args.dataset_file == 'ImageNet' and args.feature_recon: weight_dict['loss_feature'] = 1 if args.masks: weight_dict["loss_mask"] = args.mask_loss_coef weight_dict["loss_dice"] = args.dice_loss_coef # TODO this is a hack if args.aux_loss: aux_weight_dict = {} for i in range(args.dec_layers - 1): aux_weight_dict.update( {k + f'_{i}': v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ['labels', 'boxes', 'cardinality'] if args.dataset_file == 'ImageNet' and args.feature_recon: losses += ['feature'] if args.masks: losses += ["masks"] criterion = SetCriterion(num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=args.eos_coef, losses=losses) criterion.to(device) postprocessors = {'bbox': PostProcess()} if args.masks: postprocessors['segm'] = PostProcessSegm() if args.dataset_file == "coco_panoptic": is_thing_map = {i: i <= 90 for i in range(201)} postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85) return model, criterion, postprocessors