def __init__(self, num_classes, encoder=None): # use encoder to pass pretrained encoder super().__init__() if encoder is None: self.encoder = Encoder(num_classes) else: self.encoder = encoder self.decoder = erfnet.Decoder(num_classes)
def __init__(self, num_classes, encoder=None): super().__init__() print('Creating branched erfnet with {} classes'.format(num_classes)) if (encoder is None): self.encoder = erfnet.Encoder(sum(num_classes)) else: self.encoder = encoder self.decoders = nn.ModuleList() for n in num_classes: self.decoders.append(erfnet.Decoder(n))
def __init__(self, num_classes, encoder=None): super().__init__(num_classes, encoder) self.cls_conv = erfnet.Decoder(num_classes[1] + 1) self.seg = False self.init_output()
def __init__(self, num_classes): super().__init__(num_classes, encoder=LabelEncoder(num_classes=sum(num_classes))) self.cls_conv = erfnet.Decoder(num_classes[1] + 1) self.seg = False