def load_model(opt): if opt.pretrained_file != "": model = torch.load(opt.pretrained_file) else: if opt.model_def == 'gazenet': model = gazenet.Net(opt) if opt.cuda: model = model.cuda() return model
def load_model(opt): model = gazenet.Net(opt) return model.cuda()
from torchvision import transforms import matplotlib.pyplot as plt import matplotlib parser = opts.optionargparser() opt = parser.parse_args() opt.testbatchsize = 16 checkpoint = torch.load( './savedmodels/gazenet_gazefollow_softmaxnesterovsgd_70epoch.pth.tar') print("Loading pretrained model: ") start_epoch = checkpoint['epoch'] best_err = checkpoint['best_err'] model = gazenet.Net(opt).cuda() model.load_state_dict(checkpoint['state_dict']) dataloader = ld.GazeFollow(opt) images, xis, eye_coords, pred_coords, eyes, names, eyes2, gaze_final = next( iter(dataloader.val_loader)) images, xis, eye_coords, pred_coords, gaze_final = images.cuda(), xis.cuda( ), eye_coords.cuda(), pred_coords.cuda(), gaze_final.cuda() outputs = model.predict(images, xis, eye_coords) untr = transforms.Compose( [transforms.Normalize([0, 0, 0], [1 / (0.229), 1 / (0.224), 1 / (0.225)])]) untr2 = transforms.Compose(
sys.path.append('./sfd') parser = opts.optionargparser() opt = parser.parse_args() torch.device('cpu') # checkpoint = torch.load('./savedmodels/adamodels/gazenet_gazefollow_99epoch.pth.tar') checkpoint = torch.load( './savedmodels/gazenet_gazefollow_highcrop_Hope_20epoch.pth.tar', map_location=lambda storage, loc: storage) print("Loading our pretrained gazenet model: ") start_epoch = checkpoint['epoch'] #best_err = checkpoint['best_prec1'] model = gazenet.Net(opt).cpu() model.load_state_dict(checkpoint['state_dict']) imglist = glob.glob('imgs/test/*') c = 0 for imname in imglist: im = io.imread(imname) faces, eye_coords, eyes = facedetect.getFaces(im) normtransform = transforms.Compose( [transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) untr = transforms.Compose([ transforms.Normalize([0, 0, 0], [1 / (0.229), 1 / (0.224), 1 / (0.225)])