def set_model(args): model = WideResnet(n_classes=10 if args.dataset == 'CIFAR10' else 100, k=args.wresnet_k, n=args.wresnet_n) # wresnet-28-2 model.train() model.cuda() criteria_x = nn.CrossEntropyLoss().cuda() criteria_u = nn.CrossEntropyLoss(reduction='none').cuda() return model, criteria_x, criteria_u
def set_model(args): model = WideResnet(n_classes=10 if args.dataset == 'CIFAR10' else 100, k=args.wresnet_k, n=args.wresnet_n) # wresnet-28-2 name = 'simclr_trained_good_h2.pt' model.load_state_dict(torch.load(name)) print('model loaded') model.train() model.cuda() criteria_x = nn.CrossEntropyLoss().cuda() criteria_u = nn.CrossEntropyLoss(reduction='none').cuda() criteria_z = NT_Xent(args.batchsize, args.temperature, args.mu) return model, criteria_x, criteria_u, criteria_z