示例#1
0
    def __init__(self):
        self._opt = TrainOptions().parse()

        self._dataset_train = DatasetFactory.get_by_name("FinetuneDataset", self._opt)
        self._dataset_train_size = len(self._dataset_train)
        print('#train images = %d' % self._dataset_train_size)

        self._model = ModelsFactory.get_by_name("FineModel", self._opt, is_train=True)
        self._train()
示例#2
0
    def __init__(self):
        self._opt = TestOptions().parse()
        self._img_path = self._opt.img_path
        self._img_size = self._opt.image_size

        self.fine_model = ModelsFactory.get_by_name('FineModel',
                                                    self._opt,
                                                    is_train=False)
        self.svm_model_A = ModelsFactory.get_by_name('SvmModel',
                                                     self._opt,
                                                     is_train=False)
        self.svm_model_A.load('A')
        self.svm_model_B = ModelsFactory.get_by_name('SvmModel',
                                                     self._opt,
                                                     is_train=False)
        self.svm_model_B.load('B')
        self.svms = [self.svm_model_A, self.svm_model_B]
        self.reg_model = ModelsFactory.get_by_name('RegModel',
                                                   self._opt,
                                                   is_train=False)

        self.test()
示例#3
0
    def __init__(self):
        self._opt = TrainOptions().parse()

        self._dataset_train = DatasetFactory.get_by_name(
            "SVMDataset", self._opt)
        self._dataset_train_size = len(self._dataset_train)
        print('#train images = %d' % self._dataset_train_size)

        self.classA_features, self.classA_labels, self.classB_features, self.classB_labels = self._dataset_train.get_datas(
        )

        self._modelA = ModelsFactory.get_by_name("SvmModel",
                                                 self._opt,
                                                 is_train=True)
        self._modelB = ModelsFactory.get_by_name("SvmModel",
                                                 self._opt,
                                                 is_train=True)

        self._train(self._modelA, self.classA_features, self.classA_labels,
                    "A")
        self._train(self._modelB, self.classB_features, self.classB_labels,
                    "B")
示例#4
0
    def __init__(self):
        self._opt = TestOptions().parse()
        self._img_path = self._opt.img_path
        self._img_width = self._opt.image_width
        self._img_height = self._opt.image_height

        self._model = ModelsFactory.get_by_name('AlexModel',
                                                self._opt,
                                                is_train=False)
        self._classes = self._opt.classes.split(",")
        self._class_to_ind = dict(
            zip(range(1,
                      len(self._classes) + 1), self._classes))
        self._class_to_ind[0] = 'None'

        self.test()
示例#5
0
    def __init__(self):
        self._opt = TrainOptions().parse()
        data_loader_train = CustomDatasetDataLoader(self._opt,
                                                    is_for_train=True)
        #data_loader_test = CustomDatasetDataLoader(self._opt, is_for_train=False)

        self._dataset_train = data_loader_train.load_data()
        #self._dataset_test = data_loader_test.load_data()

        self._dataset_train_size = len(data_loader_train)
        #self._dataset_test_size = len(data_loader_test)
        print('#train images = %d' % self._dataset_train_size)
        #print('#test images = %d' % self._dataset_test_size)

        self._model = ModelsFactory.get_by_name(self._opt.model, self._opt)
        self._tb_visualizer = TBVisualizer(self._opt)

        self._train()
示例#6
0
    def __init__(self, opt):
        super(SVMDataset, self).__init__(opt)
        self._name = 'SVMDataset'

        self.datas = []
        self.classA_features = []
        self.classA_labels = []
        self.classB_features = []
        self.classB_labels = []
        self.save_path = os.path.join(self._opt.generate_save_path, 'svm_data.npy')

        self._img_size = self._opt.image_size        
        
        self.cursor = 0

        self.model = ModelsFactory.get_by_name('FineModel', self._opt, is_train=False)

        # read dataset
        if os.path.exists(self.save_path):
            self._load_from_numpy()
        else:
            self._load_dataset()