示例#1
0
                            momentum=0.9,
                            weight_decay=args.weight_decay)


class_weight = 45117 / torch.tensor([30160,	2,	9757,	1004,	4,	205,	833,	4,	252,	21,	7,	1366,	1323,	83,	56,	26,	1,	13]).cuda()

criterion = nn.CrossEntropyLoss(weight=class_weight)


for current_epoch in range(model.epochs):

    if current_epoch % args.step_update_lr == args.step_update_lr-1:
        for g in optimizer.param_groups:
            g['lr'] = g['lr']/3

    model.epoch = current_epoch

    print("Training epoch...")
    model.train_epoch(train_loader_T,train_loader, optimizer,criterion)

    print("Validating epoch...")
    conf_matrix = model.val_epoch(val_loader,criterion)
    model.visualize_graph()

    if model.val_history["loss"][-1] < model.min_val:
        print("Saving model...")
        model.min_val = model.val_history["loss"][-1]

        torch.save(model.state_dict(), model.session_name+"stage_1.pth")
        df = pd.DataFrame(conf_matrix)
        filepath = 'val_conf_matrix.xlsx'
示例#2
0
## Initializing the model
config = CONFIGS["ViT-B_16"]
num_classes = 18
model = VisionTransformer(config,
                          args.input_dim,
                          zero_head=True,
                          num_classes=num_classes)

model.epochs = args.epochs
model.session_name = args.session_name
model.load_pretrained(model.session_name + "stage_1.pth")
model.cuda()

#
print("testing epoch...")
model.epoch = 0
model.epochs = 0

conf_matrix_test, mIoU_test = model.evaluate(test_loader)
metrics_test = compute_metrics(conf_matrix_test)
#
# metrics_test = np.hstack([metrics_test, mIoU_test[:, np.newaxis]])
#
# df = pd.DataFrame(metrics_test)
# filepath = args.session_name + 'test_metrics.xlsx'
# df.to_excel(filepath, index=False)
#
# df = pd.DataFrame(conf_matrix_test)
# filepath = args.session_name + 'test_conf_matrix.xlsx'
# df.to_excel(filepath, index=False)
#