def dpn107(num_classes=1000, pretrained=False, test_time_pool=True): model = DPN( num_init_features=128, k_r=200, groups=50, k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128), num_classes=num_classes, test_time_pool=test_time_pool) if pretrained: if model_urls['dpn107-extra']: model.load_state_dict(model_zoo.load_url(model_urls['dpn107-extra'])) elif has_mxnet and os.path.exists('./pretrained/'): convert_from_mxnet(model, checkpoint_prefix='./pretrained/dpn107-extra') else: assert False, "Unable to load a pretrained model" return model
def dpn68b(num_classes=1000, pretrained=False, test_time_pool=True): model = DPN( small=True, num_init_features=10, k_r=128, groups=32, b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64), num_classes=num_classes, test_time_pool=test_time_pool) if pretrained: if model_urls['dpn68b-extra']: model.load_state_dict(model_zoo.load_url(model_urls['dpn68b-extra'])) elif has_mxnet and os.path.exists('./pretrained/'): convert_from_mxnet(model, checkpoint_prefix='./pretrained/dpn68-extra') else: assert False, "Unable to load a pretrained model" return model
def dpn92(num_classes=1000, pretrained=False, test_time_pool=True, extra=True): model = DPN( num_init_features=64, k_r=96, groups=32, k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), num_classes=num_classes, test_time_pool=test_time_pool) if pretrained: # there are both imagenet 5k trained, 1k finetuned 'extra' weights # and normal imagenet 1k trained weights for dpn92 key = 'dpn92' if extra: key += '-extra' if model_urls[key]: model.load_state_dict(model_zoo.load_url(model_urls[key])) elif has_mxnet and os.path.exists('./pretrained/'): convert_from_mxnet(model, checkpoint_prefix='./pretrained/' + key) else: assert False, "Unable to load a pretrained model" return model