def forward(self, in0, in1, retPerLayer=None): assert(in0.size()[0]==1) # currently only supports batchSize 1 if(self.colorspace=='RGB'): value = util.dssim(1.*util.tensor2im(in0.data), 1.*util.tensor2im(in1.data), range=255.).astype('float') elif(self.colorspace=='Lab'): value = util.dssim(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)), util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float') ret_var = Variable( torch.Tensor((value,) ) ) if(self.use_gpu): ret_var = ret_var.cuda() return ret_var
def forward(self, in0, in1, retPerLayer=None): assert(in0.size()[0]==1) # currently only supports batchSize 1 if(self.colorspace=='RGB'): (N,C,X,Y) = in0.size() value = torch.mean(torch.mean(torch.mean((in0-in1)**2,dim=1).view(N,1,X,Y),dim=2).view(N,1,1,Y),dim=3).view(N) return value elif(self.colorspace=='Lab'): value = util.l2(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)), util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float') ret_var = Variable( torch.Tensor((value,) ) ) if(self.use_gpu): ret_var = ret_var.cuda() return ret_var