def define_F(opt, use_bn=False): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # PyTorch pretrained VGG19-54, before ReLU. if use_bn: feature_layer = 49 else: feature_layer = 34 netF = SRGAN_arch.VGGFeatureExtractor(feature_layer=feature_layer, use_bn=use_bn, use_input_norm=True, device=device) netF.eval() # No need to train return netF
def define_F(opt, use_bn=False): gpu_ids = opt['gpu_ids'] device = torch.device('cuda' if gpu_ids else 'cpu') if use_bn: feature_layer = 49 else: feature_layer = 34 netF = SRGAN_arch.VGGFeatureExtractor(feature_layer=feature_layer, use_bn=use_bn, use_input_norm=True, device=device) netF.eval() return netF
def define_F(opt, use_bn=False): gpu_ids = opt["gpu_ids"] device = torch.device("cuda" if gpu_ids else "cpu") # PyTorch pretrained VGG19-54, before ReLU. if use_bn: feature_layer = 49 else: feature_layer = 34 netF = SRGAN_arch.VGGFeatureExtractor( feature_layer=feature_layer, use_bn=use_bn, use_input_norm=True, device=device ) netF.eval() # No need to train return netF