# Freeze layers for param_index in range( int((len(optimizer.param_groups[0]['params'])) * 0.5)): optimizer.param_groups[0]['params'][ param_index].requires_grad = False ######################################### # fp16 if fp16: # I only took the necessary files because I don't need the C backend of apex, # which is broken and can't be installed # from apex import fp16_utils from utils.apex.apex.fp16_utils.fp16util import BN_convert_float from utils.apex.apex.fp16_utils.fp16_optimizer import FP16_Optimizer # model = fp16_utils.BN_convert_float(model.half()) model = BN_convert_float(model.half()) # optimizer = fp16_utils.FP16_Optimizer(optimizer, verbose=False, dynamic_loss_scale=True) optimizer = FP16_Optimizer(optimizer, verbose=False, dynamic_loss_scale=True) logger.info('Apply fp16') # Restore model if resume: model_path = output_dir.joinpath(f'model_tmp.pth') logger.info(f'Resume from {model_path}') param = torch.load(model_path) model.load_state_dict(param) del param opt_path = output_dir.joinpath(f'opt_tmp.pth') param = torch.load(opt_path)
if pretrained_path: logger.info(f'Resume from {pretrained_path}') if device == torch.device('cpu'): param = torch.load(pretrained_path, map_location='cpu' ) # parameters saved in checkpoint via model_path else: param = torch.load( pretrained_path) # parameters saved in checkpoint via model_path #param = torch.load(pretrained_path) model.load_state_dict(param) del param # fp16 if fp16: from apex import fp16_utils model = fp16_utils.BN_convert_float(model.half()) optimizer = fp16_utils.FP16_Optimizer(optimizer, verbose=False, dynamic_loss_scale=True) logger.info('Apply fp16') # Restore model if resume: model_path = output_dir.joinpath(f'model_tmp.pth') logger.info(f'Resume from {model_path}') param = torch.load(model_path) model.load_state_dict(param) del param opt_path = output_dir.joinpath(f'opt_tmp.pth') param = torch.load(opt_path) optimizer.load_state_dict(param)
def process(config_path): gc.collect() torch.cuda.empty_cache() config = yaml.load(open(config_path)) net_config = config['Net'] data_config = config['Data'] train_config = config['Train'] loss_config = config['Loss'] opt_config = config['Optimizer'] device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') t_max = opt_config['t_max'] # Collect training parameters max_epoch = train_config['max_epoch'] batch_size = train_config['batch_size'] fp16 = train_config['fp16'] resume = train_config['resume'] pretrained_path = train_config['pretrained_path'] freeze_enabled = train_config['freeze'] seed_enabled = train_config['seed'] ######################################### # Deterministic training if seed_enabled: seed = 100 torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed=seed) import random random.seed(a=100) ######################################### # Network if 'unet' in net_config['dec_type']: net_type = 'unet' model = EncoderDecoderNet(**net_config) else: net_type = 'deeplab' net_config['output_channels'] = 19 model = SPPNet(**net_config) dataset = data_config['dataset'] if dataset == 'deepglobe-dynamic': from dataset.deepglobe_dynamic import DeepGlobeDatasetDynamic as Dataset net_config['output_channels'] = 7 classes = np.arange(0, 7) else: raise NotImplementedError del data_config['dataset'] modelname = config_path.stem timestamp = datetime.timestamp(datetime.now()) print("timestamp =", datetime.fromtimestamp(timestamp)) output_dir = Path(os.path.join(ROOT_DIR, f'model/{modelname}_{datetime.fromtimestamp(timestamp)}') ) output_dir.mkdir(exist_ok=True) log_dir = Path(os.path.join(ROOT_DIR, f'logs/{modelname}_{datetime.fromtimestamp(timestamp)}') ) log_dir.mkdir(exist_ok=True) dataset_dir= '/home/sfoucher/DEV/pytorch-segmentation/data/deepglobe_as_pascalvoc/VOCdevkit/VOC2012' logger = debug_logger(log_dir) logger.debug(config) logger.info(f'Device: {device}') logger.info(f'Max Epoch: {max_epoch}') # Loss loss_fn = MultiClassCriterion(**loss_config).to(device) params = model.parameters() optimizer, scheduler = create_optimizer(params, **opt_config) # history if resume: with open(log_dir.joinpath('history.pkl'), 'rb') as f: history_dict = pickle.load(f) best_metrics = history_dict['best_metrics'] loss_history = history_dict['loss'] iou_history = history_dict['iou'] start_epoch = len(iou_history) for _ in range(start_epoch): scheduler.step() else: start_epoch = 0 best_metrics = 0 loss_history = [] iou_history = [] affine_augmenter = albu.Compose([albu.HorizontalFlip(p=.5),albu.VerticalFlip(p=.5) # Rotate(5, p=.5) ]) # image_augmenter = albu.Compose([albu.GaussNoise(p=.5), # albu.RandomBrightnessContrast(p=.5)]) image_augmenter = None # This has been put in the loop for the dynamic training """ # Dataset train_dataset = Dataset(affine_augmenter=affine_augmenter, image_augmenter=image_augmenter, net_type=net_type, **data_config) valid_dataset = Dataset(split='valid', net_type=net_type, **data_config) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True) valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=4, pin_memory=True) """ # Pretrained model if pretrained_path: logger.info(f'Resume from {pretrained_path}') param = torch.load(pretrained_path) model.load_state_dict(param) model.logits = torch.nn.Conv2d(256, net_config['output_channels'], 1) del param # To device model = model.to(device) ######################################### if freeze_enabled: # Code de Rémi # Freeze layers for param_index in range(int((len(optimizer.param_groups[0]['params']))*0.5)): optimizer.param_groups[0]['params'][param_index].requires_grad = False ######################################### params_to_update = model.parameters() print("Params to learn:") if freeze_enabled: params_to_update = [] for name,param in model.named_parameters(): if param.requires_grad == True: params_to_update.append(param) print("\t",name) optimizer, scheduler = create_optimizer(params_to_update, **opt_config) # fp16 if fp16: # I only took the necessary files because I don't need the C backend of apex, # which is broken and can't be installed # from apex import fp16_utils from utils.apex.apex.fp16_utils.fp16util import BN_convert_float from utils.apex.apex.fp16_utils.fp16_optimizer import FP16_Optimizer # model = fp16_utils.BN_convert_float(model.half()) model = BN_convert_float(model.half()) # optimizer = fp16_utils.FP16_Optimizer(optimizer, verbose=False, dynamic_loss_scale=True) optimizer = FP16_Optimizer(optimizer, verbose=False, dynamic_loss_scale=True) logger.info('Apply fp16') # Restore model if resume: model_path = output_dir.joinpath(f'model_tmp.pth') logger.info(f'Resume from {model_path}') param = torch.load(model_path) model.load_state_dict(param) del param opt_path = output_dir.joinpath(f'opt_tmp.pth') param = torch.load(opt_path) optimizer.load_state_dict(param) del param i_iter = 0 ma_loss= 0 ma_iou= 0 # Train for i_epoch in range(start_epoch, max_epoch): logger.info(f'Epoch: {i_epoch}') logger.info(f'Learning rate: {optimizer.param_groups[0]["lr"]}') train_losses = [] train_ious = [] model.train() # Initialize randomized but balanced datasets train_dataset = Dataset(base_dir = dataset_dir, affine_augmenter=affine_augmenter, image_augmenter=image_augmenter, net_type=net_type, **data_config) valid_dataset = Dataset(base_dir = dataset_dir, split='valid', net_type=net_type, **data_config) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True) valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=4, pin_memory=True) with tqdm(train_loader) as _tqdm: for i, batched in enumerate(_tqdm): images, labels = batched if fp16: images = images.half() images, labels = images.to(device), labels.to(device) optimizer.zero_grad() preds = model(images) if net_type == 'deeplab': preds = F.interpolate(preds, size=labels.shape[1:], mode='bilinear', align_corners=True) if fp16: loss = loss_fn(preds.float(), labels) else: loss = loss_fn(preds, labels) preds_np = preds.detach().cpu().numpy() labels_np = labels.detach().cpu().numpy() iou = compute_iou_batch(np.argmax(preds_np, axis=1), labels_np, classes) _tqdm.set_postfix(OrderedDict(seg_loss=f'{loss.item():.5f}', iou=f'{iou:.3f}')) train_losses.append(loss.item()) train_ious.append(iou) ma_loss= 0.01*loss.item() + 0.99 * ma_loss ma_iou= 0.01*iou + 0.99 * ma_iou plotter.plot('loss', 'train', 'iteration Loss', i_iter, loss.item()) plotter.plot('iou', 'train', 'iteration iou', i_iter, iou) plotter.plot('loss', 'ma_loss', 'iteration Loss', i_iter, ma_loss) plotter.plot('iou', 'ma_iou', 'iteration iou', i_iter, ma_iou) if fp16: optimizer.backward(loss) else: loss.backward() optimizer.step() i_iter += 1 scheduler.step() train_loss = np.mean(train_losses) train_iou = np.nanmean(train_ious) logger.info(f'train loss: {train_loss}') logger.info(f'train iou: {train_iou}') plotter.plot('loss-epoch', 'train', 'iteration Loss', i_epoch, train_loss) plotter.plot('iou-epoch', 'train', 'iteration iou', i_epoch, train_iou) torch.save(model.state_dict(), output_dir.joinpath('model_tmp.pth')) torch.save(optimizer.state_dict(), output_dir.joinpath('opt_tmp.pth')) valid_losses = [] valid_ious = [] model.eval() with torch.no_grad(): with tqdm(valid_loader) as _tqdm: for batched in _tqdm: images, labels = batched if fp16: images = images.half() images, labels = images.to(device), labels.to(device) preds = model.tta(images, net_type=net_type) if fp16: loss = loss_fn(preds.float(), labels) else: loss = loss_fn(preds, labels) preds_np = preds.detach().cpu().numpy() labels_np = labels.detach().cpu().numpy() # I changed a parameter in the compute_iou method to prevent it from yielding nans iou = compute_iou_batch(np.argmax(preds_np, axis=1), labels_np, classes) _tqdm.set_postfix(OrderedDict(seg_loss=f'{loss.item():.5f}', iou=f'{iou:.3f}')) valid_losses.append(loss.item()) valid_ious.append(iou) valid_loss = np.mean(valid_losses) valid_iou = np.mean(valid_ious) logger.info(f'valid seg loss: {valid_loss}') logger.info(f'valid iou: {valid_iou}') plotter.plot('loss-epoch', 'valid', 'iteration Loss', i_epoch, valid_loss) plotter.plot('iou-epoch', 'valid', 'iteration iou', i_epoch, valid_iou) if best_metrics < valid_iou: best_metrics = valid_iou logger.info('Best Model!') torch.save(model.state_dict(), output_dir.joinpath('model.pth')) torch.save(optimizer.state_dict(), output_dir.joinpath('opt.pth')) loss_history.append([train_loss, valid_loss]) iou_history.append([train_iou, valid_iou]) history_ploter(loss_history, log_dir.joinpath('loss.png')) history_ploter(iou_history, log_dir.joinpath('iou.png')) history_dict = {'loss': loss_history, 'iou': iou_history, 'best_metrics': best_metrics} with open(log_dir.joinpath('history.pkl'), 'wb') as f: pickle.dump(history_dict, f)