def __init__(self, inplanes, planes, base_width=64, stride=1, dilation=1, norm='bn', conv='normal', context='none', ctx_ratio=0.0625, radix=1, stride_3x3=False, downsample=None): super(BasicBlock, self).__init__() if conv == 'normal': conv_op = nn.Conv2d elif conv == 'deform': conv_op = ops.DeformConvPack elif conv == 'deformv2': conv_op = ops.ModulatedDeformConvPack else: raise ValueError( '{} type conv operation is not supported.'.format(conv)) assert context in ['none', 'se', 'gcb'] width = int(planes * (base_width / 64.)) self.conv1 = conv_op(inplanes, width, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False) self.bn1 = make_norm(width, norm=norm, an_k=10 if planes < 256 else 20) self.conv2 = conv_op(width, width, kernel_size=3, stride=1, dilation=dilation, padding=dilation, bias=False) self.bn2 = make_norm(width, norm=norm, an_k=10 if planes < 256 else 20) if context == 'none': self.ctx = None elif context == 'se': self.ctx = ops.SeConv2d(width, int(width * ctx_ratio)) elif context == 'gcb': self.ctx = ops.GlobalContextBlock(width, int(width * ctx_ratio)) else: raise ValueError( '{} type context operation is not supported.'.format(context)) self.relu = nn.ReLU(inplace=True) self.downsample = downsample
def __init__(self, inplanes, outplanes, stride=1, dilation=1, kernel=3, groups=(1, 1), t=6, norm='bn', se_ratio=0, activation=nn.ReLU6): super(LinearBottleneck, self).__init__() padding = (dilation * kernel - dilation) // 2 self.stride = stride self.inplanes, self.outplanes, innerplanes = int(inplanes), int(outplanes), int(inplanes * abs(t)) self.t = t if self.t != 1: self.conv1 = nn.Conv2d(self.inplanes, innerplanes, kernel_size=1, padding=0, stride=1, groups=groups[0], bias=False) self.bn1 = make_norm(innerplanes, norm=norm) self.conv2 = nn.Conv2d(innerplanes, innerplanes, kernel_size=kernel, padding=padding, stride=stride, dilation=dilation, groups=innerplanes, bias=False) self.bn2 = make_norm(innerplanes, norm=norm) self.se = ops.SeConv2d(innerplanes, int(self.inplanes * se_ratio), activation) if se_ratio else None self.conv3 = nn.Conv2d(innerplanes, self.outplanes, kernel_size=1, padding=0, stride=1, groups=groups[1], bias=False) self.bn3 = make_norm(self.outplanes, norm=norm) try: self.activation = activation(inplace=True) except: self.activation = activation()
def __init__(self, inplanes, planes, base_width=64, stride=1, dilation=1, norm='bn', conv='normal', context='none', ctx_ratio=0.0625, radix=1, stride_3x3=False, downsample=None): super(Bottleneck, self).__init__() if conv == 'normal': conv_op = nn.Conv2d elif conv == 'deform': conv_op = ops.DeformConvPack elif conv == 'deformv2': conv_op = ops.ModulatedDeformConvPack else: raise ValueError( '{} type conv operation is not supported.'.format(conv)) (str1x1, str3x3) = (1, stride) if stride_3x3 else (stride, 1) width = int(planes * (base_width / 64.)) self.radix = radix self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, stride=str1x1, bias=False) self.bn1 = make_norm(width, norm=norm.split('_')[-1]) if radix > 1 and (str3x3 > 1 or dilation > 1): self.avd_layer = nn.AvgPool2d(3, str3x3, padding=1) str3x3 = 1 else: self.avd_layer = None if radix > 1: self.conv2 = ops.SplAtConv2d(width, width, kernel_size=3, stride=str3x3, padding=dilation, dilation=dilation, bias=False, radix=radix) else: self.conv2 = conv_op(width, width, kernel_size=3, stride=str3x3, dilation=dilation, padding=dilation, bias=False) self.bn2 = make_norm(width, norm=norm, an_k=10 if planes < 256 else 20) self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = make_norm(planes * self.expansion, norm=norm.split('_')[-1]) if context == 'none': self.ctx = None elif context == 'se': self.ctx = ops.SeConv2d(planes * self.expansion, int(planes * self.expansion * ctx_ratio)) elif context == 'gcb': self.ctx = ops.GlobalContextBlock( planes * self.expansion, int(planes * self.expansion * ctx_ratio)) elif context == 'nonlocal': self.ctx = ops.NonLocal2d(planes * self.expansion, int(planes * self.expansion * ctx_ratio), planes * self.expansion, use_gn=True) elif context == 'msa': self.ctx = ops.MS_NonLocal2d(planes * self.expansion, int(planes * self.expansion * ctx_ratio), planes * self.expansion, use_gn=True) else: raise ValueError( '{} type context operation is not supported.'.format(context)) self.relu = nn.ReLU(inplace=True) self.downsample = downsample
def __init__(self, inplanes, planes, base_width=64, stride=1, dilation=1, norm='bn', conv='normal', context='none', ctx_ratio=0.0625, stride_3x3=False, downsample=None): super(AlignedBottleneck, self).__init__() if conv == 'normal': conv_op = nn.Conv2d elif conv == 'deform': conv_op = ops.DeformConvPack elif conv == 'deformv2': conv_op = ops.ModulatedDeformConvPack else: raise ValueError( '{} type conv operation is not supported.'.format(conv)) width = int(planes * (base_width / 64.)) self.conv1_1 = nn.Conv2d(inplanes, width, kernel_size=1, stride=1, padding=0, bias=False) self.bn1_1 = make_norm(width, norm=norm.split('_')[-1]) self.conv1_2 = conv_op(width, width, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False) self.conv2_1 = nn.Conv2d(inplanes, width // 2, kernel_size=1, stride=1, padding=0, bias=False) self.bn2_1 = make_norm(width // 2, norm=norm.split('_')[-1]) self.conv2_2 = conv_op(width // 2, width // 2, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False) self.bn2_2 = make_norm(width // 2, norm=norm, an_k=10 if planes < 256 else 20) self.conv2_3 = conv_op(width // 2, width // 2, kernel_size=3, stride=1, dilation=dilation, padding=dilation, bias=False) self.bn_concat = make_norm(width + (width // 2), norm=norm, an_k=10 if planes < 256 else 20) self.conv = nn.Conv2d(width + (width // 2), planes * self.expansion, kernel_size=1, stride=1, padding=0, bias=False) self.bn = make_norm(planes * self.expansion, norm=norm.split('_')[-1]) if context == 'none': self.ctx = None elif context == 'se': self.ctx = ops.SeConv2d(planes * self.expansion, int(planes * self.expansion * ctx_ratio)) elif context == 'gcb': self.ctx = ops.GlobalContextBlock( planes * self.expansion, int(planes * self.expansion * ctx_ratio)) else: raise ValueError( '{} type context operation is not supported.'.format(context)) self.relu = nn.ReLU(inplace=True) self.downsample = downsample
def __init__(self, inplanes, planes, base_width, cardinality, stride=1, dilation=1, norm='bn', conv='normal', context='none', ctx_ratio=0.0625, downsample=None): """ Constructor Args: inplanes: input channel dimensionality planes: output channel dimensionality base_width: base width. cardinality: num of convolution groups. stride: conv stride. Replaces pooling layer. """ super(Bottleneck, self).__init__() D = int(math.floor(planes * (base_width / 64.0))) C = cardinality if conv == 'normal': conv_op = nn.Conv2d elif conv == 'deform': conv_op = ops.DeformConvPack elif conv == 'deformv2': conv_op = ops.ModulatedDeformConvPack else: raise ValueError( '{} type conv operation is not supported.'.format(conv)) self.conv1 = nn.Conv2d(inplanes, D * C, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = make_norm(D * C, norm=norm) self.conv2 = conv_op(D * C, D * C, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, groups=C, bias=False) self.bn2 = make_norm(D * C, norm=norm) self.conv3 = nn.Conv2d(D * C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = make_norm(planes * 4, norm=norm) if context == 'none': self.ctx = None elif context == 'se': self.ctx = ops.SeConv2d(planes * 4, int(planes * 4 * ctx_ratio)) elif context == 'gcb': self.ctx = ops.GlobalContextBlock(planes * 4, int(planes * 4 * ctx_ratio)) else: raise ValueError( '{} type context operation is not supported.'.format(context)) self.relu = nn.ReLU(inplace=True) self.downsample = downsample