示例#1
0
    def new_portfolio(self, starting_time, ending_time):
        portfolio = Portfolio(author=self.email,
                              starting_time=starting_time,
                              ending_time=ending_time,
                              author_id=self._id)

        portfolio.save_to_mongo()
示例#2
0
    def __init__(self,
                 started_money,
                 data,
                 risk_level=0.1,
                 index_col='',
                 names=(),
                 seq_len=20):
        self.data = data
        self.index_col = index_col
        self.names = names
        self.seq_len = seq_len

        if risk_level > 1.0 or not isinstance(risk_level, float):
            raise ValueError('Risk can be only in 0.01..1.0 range.')
        self.risk_level = risk_level

        self.portfolio = Portfolio(started_money)

        self.dao = None
        self.done = None

        self.current_state = None
        self.current_price = None

        self.reset()

        self.action_space = gym.spaces.Discrete(3)
        self.actions = {0: self.buy, 1: self.sell, 2: self.hold}
示例#3
0
def main():
    p1 = Portfolio(1, 'janesmith', 'p1', 10000.00, [])
    t1 = StockTransaction(1, 1, "AAPL", 234.40, 2, datetime.now())
    t2 = StockTransaction(2, 1, "NFLX", 218.56, 10, datetime.now())
    t3 = StockTransaction(3, 1, "AAPL", 209.29, 1, datetime.now())

    p1.process_transaction(t1)
    #print(p1.stock_holdings)
    p1.process_transaction(t2)
    #print(p1.stock_holdings)
    p1.process_transaction(t3)
   #print(p1.stock_holdings)


    print("holdings: " + str(p1.stock_holdings))
    print("cash: " + str(p1.cash))
    print("value: " + str(p1.portfolio_value))
    print("return: " + str(p1.portfolio_return))

    t4 = StockTransaction(4, 1, "NFLX", 279.12, -5, datetime.now())
    p1.process_transaction(t4)
    print("holdings: " + str(p1.stock_holdings))
    print("cash: " + str(p1.cash))
    print("value: " + str(p1.portfolio_value))
    print("return: " + str(p1.portfolio_return))
 def add_portfolio(self, portfolio: Portfolio):
     with sqlite3.connect(self._db_path) as connection:
         cursor = connection.cursor()
         query = self.build_insert_query(
             table=PortfoliosTable.TABLE_NAME,
             columns=(PortfoliosTable.Columns.HOLDER,
                      PortfoliosTable.Columns.NAME,
                      PortfoliosTable.Columns.CASH))
         cursor.execute(query, _unpack_portfolio(portfolio))
         connection.commit()
         portfolio.update_with_generated_id(cursor.lastrowid)
def add_asset(managed_portfolio: portfolio.Portfolio,
              asset_code: Text,
              asset_name: Text,
              asset_price: Optional[float] = 0.0,
              asset_currency: Optional[Text] = '') -> asset.Asset:
    """Adds an asset to a given portfolio.

  Args:
    managed_portfolio: Portfolio where to add asset.
    asset_code: Code of the asset to add.
    asset_name: Name of the asset to add.
    asset_price: Price of the asset.
    asset_currency: Currency of the asset price.

  Raises:
    ValueError: asset already exists in portfolio.

  Returns:
    New Asset created.
  """
    if contains_asset(managed_portfolio, asset_code):
        raise ValueError(f'Asset {asset_code} already exists.')

    new_asset = asset.Asset(asset_code, asset_name, asset_price,
                            asset_currency)
    managed_portfolio.assets[asset_code] = new_asset
    portfolio_manager.store_portfolio(managed_portfolio)

    return new_asset
示例#6
0
def paper_trade(df_trade, indices, prices, clf_name, trading_params,
                selector_f):
    start_date, final_date = trading_params['dates']
    print("Starting trading for %s: %s from [%s-%s] every %s" %
          (clf_name, trading_params['mode'], start_date, final_date,
           trading_params['trade_frequency']))

    if trading_params['mode'] == 'sell_all':
        update_positions = update_positions_buy_sell_all
    elif trading_params['mode'] == 'avoid_fees':
        update_positions = update_positions_avoiding_fees

    portfolios = []
    positions = []
    stash = 100000

    for i in range(0, len(indices)):
        day = indices[i]
        # sort by predicted increment per stock of classifier clf_name

        topk, botk = selector_f(df_trade, day, clf_name, trading_params)

        old_positions = positions
        old_stash = stash
        stash, positions = update_positions(prices, day, old_stash,
                                            old_positions, botk, topk)

        pf = Portfolio(day, cash=stash, positions=positions)

        portfolios.append(pf)

    print("Finished trading for %s" % clf_name)
    return portfolios
示例#7
0
def portfolio_asset(portfolio_id=None):
    user = User.get_by_email(session['email'])

    portfolio = user.get_portfolio()
    portfolio = Portfolio.from_mongo(portfolio_id)
    asset = portfolio.get_asset()

    return render_template('Aasset.html', posts=posts, portfolio_title=portfolio.title, portfolio_id=portfolio._id)
    def _build_portfolio_from_cursor_output(self, output_row) -> Portfolio:
        portfolio_id = output_row[0]
        holder = output_row[1]
        name = output_row[2]
        cash = output_row[3]
        stock_transactions = self._build_stock_transactions_for_portfolio(
            portfolio_id)

        return Portfolio(portfolio_id, holder, name, cash, stock_transactions)
示例#9
0
    def test_update_portfolio(self):

        portfolio = Portfolio(1, 'test', 'myFirstPort', 200000.00, [])
        self.portfolio_repository.update_portfolio(portfolio)

        portfolio = self.portfolio_repository.get_portfolio_by_id(1)
        self.assertEqual(portfolio.portfolio_id, 1)
        self.assertEqual(portfolio.holder, 'test')
        self.assertEqual(portfolio.name, 'myFirstPort')
        self.assertEqual(portfolio.cash, 200000.00)
示例#10
0
    def test_add_portfolio(self):
        portfolio = Portfolio(None, 'test', 'myThirdPort', 15000.00, [])

        self.portfolio_repository.add_portfolio(portfolio)
        portfolio = self.portfolio_repository.get_portfolio_by_id(portfolio.portfolio_id)

        self.assertEqual(portfolio.portfolio_id, 3)
        self.assertEqual(portfolio.holder, 'test')
        self.assertEqual(portfolio.name, 'myThirdPort')
        self.assertEqual(portfolio.cash, 15000.00)
示例#11
0
 def create_portfolio(self, algorithm_name):
     date_time = datetime.now()
     # Create Portfolio Object
     uid = str(uuid.uuid4())
     portfolio = Portfolio(date_time=date_time,
                           algorithm=algorithm_name,
                           risk=self.risk_score,
                           link=uid)
     # portfolio.id = db.session.query(Portfolio).count() + 1
     return portfolio
    def create_portfolio_for_user(self, user_id: str, name: str, cash: int = 0) -> Portfolio:
        if self._portfolio_repository.has_portfolio_by_user_and_name(user_id, name):
            match = re.search(r'(.*\()([0-9]+)\)', name)
            if match:
                new_name = f'{match.group(1)}{int(match.group(2)) + 1})'
            else:
                new_name = f'{name} (2)'

            return self.create_portfolio_for_user(user_id, new_name, cash)

        portfolio = Portfolio(None, user_id, name, cash, [])
        self._portfolio_repository.add_portfolio(portfolio)

        return portfolio
import sys
import os
from analysis.backtest.strategies.technical_analysis.moving_average import MovingAverageStrategy
from datetime import datetime
import pytz
from models.portfolio import Portfolio

if __name__ == "__main__":
    sys.path.append(os.getcwd() + '\\')
    start = datetime(2014, 1, 1, 0, 0, 0, 0, pytz.utc)
    end = datetime(2019, 1, 1, 0, 0, 0, 0, pytz.utc)
    assets = ['MSFT', 'TSX:MSI']
    benchmark = 'MSFT'
    portfolio = Portfolio(assets, benchmark)
    mov_avg_strategy = MovingAverageStrategy()
    mov_avg_strategy.run(portfolio, start, end)

    print(portfolio.performance)
    print(portfolio.performance[['portfolio_value',
                                 'benchmark_period_return']])
def main(ticker):
    """engine to run script"""

    TIME_DEBUG = 0
    MAX_ITER_DEBUG = 1000
    CONTROL_BOUGHT = None
    CONTROL_SALE = None
    CONTROL_BEGIN = None
    CONTROL_END = None

    market_data_client = MarketDataClient('data/stooq_hourly/wmt.us.txt', ticker)
    market_data_stream = MarketDataStream(STREAM_PERIOD)
    portfolio = Portfolio([ticker])
    decision_client = AlgoSignals()

    try:
        for _ in range(WARMUP_DATA_COUNT):
            # saturate the stream
            tick_data = market_data_client.get_parsed_tick_data()
            market_data_stream.update(
                tick_data['open'],
                tick_data['high'],
                tick_data['low'],
                tick_data['close'])
            CONTROL_BEGIN = tick_data['date']
            CONTROL_BOUGHT = tick_data['open']

        sma = SimpleMovingAverage()
        stochk = StochasticOscillatorK()
        stochd = StochasticOscillatorD()
        stochdslow = StochasticOscillatorD()
        rsi = RSI(market_data_stream.open, market_data_stream.close)

        while True:
            tick_data = market_data_client.get_parsed_tick_data()
            market_data_stream.update(
                tick_data['open'],
                tick_data['high'],
                tick_data['low'],
                tick_data['close'])

            sma.calc(market_data_stream.close)
            stochk.calc(market_data_stream.high, market_data_stream.low, market_data_stream.close)
            stochd.calc(stochk)
            stochdslow.calc(stochd)
            rsi.calc(market_data_stream.open, market_data_stream.close)

            if (
                    sma.saturated() and
                    stochk.saturated() and
                    stochd.saturated() and
                    rsi.saturated()
                ):
                # ASSET TRANSACTION LOGIC, THIS CUSTOM LOGIC ENSURES
                # THAT BUYING AND SELLING CANNOT HAPPEN AT THE SAME TIME
                # this is changeable
                decision = decision_client.buy(
                    portfolio,
                    market_data_client.ticker,
                    market_data_stream.close.curr(),
                    rsi,
                    stochk,
                    stochd)

                TIME_DEBUG += 1
                MAX_ITER_DEBUG -= 1

                if decision['make_transaction']:
                    print 'Buying {} at {} after {} ticks'.format(
                        decision['amount'], decision['price'], TIME_DEBUG)
                    TIME_DEBUG = 0
                    print portfolio.cash
                    print sma
                    print stochk
                    print stochd
                    print stochdslow
                    print rsi
                    portfolio.purchase(
                        market_data_client.ticker, decision['amount'], decision['price'])
                    #input('Press enter to continue: ')
                    continue
                decision = decision_client.sell(
                    portfolio,
                    market_data_client.ticker,
                    market_data_stream.close.curr(),
                    rsi,
                    stochk,
                    stochd)

                if decision['make_transaction']:
                    print 'Selling {} at {} after {} ticks'.format(
                        decision['amount'], decision['price'], TIME_DEBUG)
                    portfolio.sale(ticker, decision['amount'], decision['price'])
                    print 'cash at hand: {}'.format(portfolio.cash)
                    TIME_DEBUG = 0
                    #input('Press enter to continue: ')

                if portfolio.cash < 0:
                    raise Exception('wtf, you really messed up')

                if MAX_ITER_DEBUG < 0:
                    CONTROL_END = tick_data['date']
                    raise IndexError('normal')

                CONTROL_SALE = tick_data['close']

    except IndexError:
        # terrible hack to know when we reach end of file
        print 'BOUGHT AT {}, SOLD AT {}'.format(CONTROL_BOUGHT, CONTROL_SALE)
        print 'from {} to {}'.format(CONTROL_BEGIN, CONTROL_END)
示例#15
0
 def get_portfolio(self):
     return Portfolio.find_by_author_id(self._id)
示例#16
0
 def new_asset(portfolio_id, asset_name,
               asset_weight):  #, date=datetime.datetime.utcnow()):
     portfolio = Portfolio.from_mongo(portfolio_id)
     portfolio.new_asset(asset_name=asset_name, asset_weight=asset_weight)
示例#17
0
    def setup(self):

        self.p = Portfolio()
示例#18
0
from analysis.backtest.strategies.modern_portfolio_theory.capm import CAPM

from models.portfolio import Portfolio

if __name__ == "__main__":
    sys.path.append(os.getcwd() + '\\')

    #  markowitz model

    # start = datetime(2010, 1, 1, 0, 0, 0, 0, pytz.utc)
    # end = datetime(2017, 1, 1, 0, 0, 0, 0, pytz.utc)

    benchmark = '^GSPC'
    stocks = ['AAPL', 'MSFT', 'WMT', 'AMZN']

    p = Portfolio(stocks, benchmark)
    p.download_historical_data()
    print(p.historical_data)
    m = MarkowitzModel(p)
    m.generate_portfolios()
    m.plot_portfolios()
    m.find_optimal_weights()
    print(m.optimal_weights)
    p.weights = m.optimal_weights
    m.print_optimal_portfolio()
    m.plot_optimal_portfolio()

    # CAPM
    capm = CAPM(p)
    capm.run()
    capm.plot()
示例#19
0
class Environment(gym.Env):
    def __init__(self,
                 started_money,
                 data,
                 risk_level=0.1,
                 index_col='',
                 names=(),
                 seq_len=20):
        self.data = data
        self.index_col = index_col
        self.names = names
        self.seq_len = seq_len

        if risk_level > 1.0 or not isinstance(risk_level, float):
            raise ValueError('Risk can be only in 0.01..1.0 range.')
        self.risk_level = risk_level

        self.portfolio = Portfolio(started_money)

        self.dao = None
        self.done = None

        self.current_state = None
        self.current_price = None

        self.reset()

        self.action_space = gym.spaces.Discrete(3)
        self.actions = {0: self.buy, 1: self.sell, 2: self.hold}
        # TODO: define observation space
        # self.observation_space = gym.spaces.Discrete()

    def buy(self, count):
        if self.portfolio.bankroll < count * self.current_price:
            return -1

        return self.portfolio.open_order('ETH', count, self.current_price)

    def sell(self):
        if not self.portfolio.opened_orders:
            return -1

        return self.portfolio.close_order(self.current_price)

    def hold(self):
        if self.portfolio.opened_orders:
            buy_price = self.portfolio.opened_orders[0]['buy_price']
            price_diff = np.abs((buy_price - self.current_price) /
                                ((buy_price + self.current_price) / 2))
            if price_diff > 0.2:  # add this to a Strategy model
                return -1

        return 0

    def reset(self):
        self.dao = DataAccessObject(self.data, self.index_col, self.names,
                                    self.seq_len)
        self.done = False

    def update_state(self):
        try:
            self.current_state = next(self.dao.sequential_data)
            self.current_price = next(self.dao.close_price_iterator)
        except StopIteration:
            self.done = True

    @staticmethod
    def _clip_reward(reward):
        if reward > 0:
            reward = 1
        elif reward < 0:
            reward = -1
        else:
            reward = 0

        return reward

    def step(self, action):
        if action == 0:  # buy
            buy_count = (self.portfolio.bankroll *
                         self.risk_level) / self.current_price
            reward = self.buy(buy_count)
            self.update_state()
        elif action == 1:  # sell
            reward = self.sell()
            self.update_state()
        else:  # hold
            reward = self.hold()
            self.update_state()

        return self.current_state, self._clip_reward(
            reward), self.done, self.portfolio.__str__()
示例#20
0
    year = int('20' + date[-2:])
    month = int(date[3:-3])
    day = int(date[0:2])
    return datetime.replace(year = year, month = month, day = day).format('YYYY-MM-DDTHH:mm:ss')


def get_index_value_history(csv_name):
    date_prices = []
    with open(csv_name, newline='') as fd:
        reader = csv.reader(fd)
        for nrow, row in enumerate(reader):
            date_prices.append({'created_at': datetime_from_string(row[0]),
                           'portfolio_value': float(row[1])})
            for indx, sector in enumerate(SECTORS):
                date_prices[nrow][sector] = float(row[2 + indx])
    return date_prices

if __name__ == '__main__':

        INDEX_VALUATIONS = '../csvs/index_valuations.csv'

        user = User.where('email', 'admin@alpha50').first()
        portfolio = Portfolio.where('name', 'Alpha50').where('user_id', user.id).first()
        valuations = get_index_value_history(INDEX_VALUATIONS)
        for valuation in valuations:
            valuation['portfolio_id'] = portfolio.id
            PortfolioValuation.create(valuation)
            


示例#21
0
#!/usr/bin/env python3

import os, sys, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0,parentdir)

import arrow
from models.stock import Stock
from models.portfolio import Portfolio
from models.portfolio_valuation import PortfolioValuation

SECTORS = ['information_technology', 'energy', 'consumer_discretionary', 'health_care', 'industrials', 'telecommunications_services', 'financials', 'consumer_staples']

for portfolio in Portfolio.all():
    total_value = portfolio.total_cash
    portfolio_info = {}
    for sector in SECTORS:
        portfolio_info[sector] = 0
    portfolio_info['portfolio_id'] = portfolio.id
    for stock in portfolio.stocks_portfolios().get_results():
        market_stock = Stock.find(stock.stock_id)
        sector = market_stock.sector.lower().replace(' ', '_')
        if not market_stock.latest_price:
            market_stock.latest_price = 0
        total_value += market_stock.latest_price * stock.quantity_held
        portfolio_info[sector] += market_stock.latest_price * stock.quantity_held
    portfolio_info['portfolio_value'] = total_value
    portfolio_info['created_at'] = arrow.now('US/Pacific').format('YYYY-MM-DDTHH:mm:ss')
    PortfolioValuation.create(portfolio_info)