def check_and_download_vgg_checkpoint(): if not tf.gfile.Exists(checkpoints_dir): tf.gfile.MakeDirs(checkpoints_dir) from models.research.slim.datasets import dataset_utils url = "http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz" dataset_utils.download_and_uncompress_tarball(url, checkpoints_dir)
def main(): """Runs the download and conversion operation.""" args = _parse_args() dataset_dir = args.data_dir if not tf.gfile.Exists(dataset_dir): tf.gfile.MakeDirs(dataset_dir) training_filename = _get_output_filename(dataset_dir, 'train') testing_filename = _get_output_filename(dataset_dir, 'test') if tf.gfile.Exists(training_filename) and tf.gfile.Exists( testing_filename): print('Dataset files already exist. Exiting without re-creating them.') return dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir) # First, process the training data: with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer: offset = 0 for i in range(_NUM_TRAIN_FILES): filename = os.path.join(dataset_dir, 'cifar-10-batches-py', 'data_batch_%d' % (i + 1)) # 1-indexed. offset = _add_to_tfrecord(filename, tfrecord_writer, offset) # Next, process the testing data: with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer: filename = os.path.join(dataset_dir, 'cifar-10-batches-py', 'test_batch') _add_to_tfrecord(filename, tfrecord_writer) # Finally, write the labels file: labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES)) dataset_utils.write_label_file(labels_to_class_names, dataset_dir) _clean_up_temporary_files(dataset_dir) print('\nFinished converting the Cifar10 dataset!')
for index in range(start_index, stop_index): prepared_images.append(preprocess(X[index])) labels.append(y[index]) X_batch = np.stack(prepared_images) y_batch = np.array(labels, dtype=np.int32) return X_batch, y_batch if not tf.gfile.Exists("models/cnn"): tf.gfile.MakeDirs("models/cnn") if not os.path.exists("models/cnn/inception_v3.ckpt"): dataset_utils.download_and_uncompress_tarball( "http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz", "models/cnn") if not os.path.exists("tmp/faces"): os.makedirs("tmp/faces") if not os.path.exists("tmp/faces/lfw-deepfunneled.tgz"): dataset_utils.download_and_uncompress_tarball( "http://vis-www.cs.umass.edu/lfw/lfw-deepfunneled.tgz", "tmp/faces") class_mapping = {} class_images = {} dir = enumerate(os.listdir("images/faces/")) for index, directory in dir: a = directory.split(" ")
from os.path import isfile, isdir from tqdm import tqdm data_dir = 'data/' url = "http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz" checkpoints_dir = "model_checkpoint/" nrof_labelled = 1000 if not isdir(data_dir): raise Exception("Data directory doesn't exist!") if not tf.gfile.Exists(checkpoints_dir): tf.gfile.MakeDirs(checkpoints_dir) dataset_utils.download_and_uncompress_tarball(url, checkpoints_dir) class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num # Load the training and testing datasets trainset = loadmat(data_dir + 'train_64x64.mat') # read the images as .mat format testset = loadmat(data_dir + 'test_64x64.mat')