trainloader = DataLoader(ImageNet( train=True, transform=transforms.Compose([transforms.ToTensor()]), target_transform=transforms.Compose([transforms.ToTensor()]), ), batch_size=10, shuffle=False, num_workers=8) model = ResNetMCC() model.to(device=DEVICE) criterion = torch.nn.MSELoss(reduction='sum') # criterion = multi_angular_loss optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY) # optimizer = torch.optim.SGD( # model.parameters(), # momentum=0.9, # lr=LEARNING_RATE, # weight_decay=WEIGHT_DECAY # ) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1) def run(epoch): statistical_losses = StatisticalValue() statistical_angular_errors = StatisticalValue()
target_transform=transforms.Compose([ transforms.ToTensor() ]), ), batch_size=10, shuffle=False, num_workers=8 ) model = ResNetMCC(layer_count=152) model.to(device=DEVICE) criterion = torch.nn.MSELoss(reduction='sum') # criterion = multi_angular_loss optimizer = torch.optim.Adam( model.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY ) # optimizer = torch.optim.SGD( # model.parameters(), # momentum=0.9, # lr=LEARNING_RATE, # weight_decay=WEIGHT_DECAY # ) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1) def run(epoch): statistical_losses = StatisticalValue() statistical_angular_errors = StatisticalValue()