assert False, 'Do not support dataset : {}'.format(args.dataset) train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) print("=> creating model '{}'".format(args.arch)) if args.dataset=='imagenet': if args.arch=='resnet34': net=resnet_imagenet.resnet34(args=args) elif args.arch=='resnet18': net=resnet_imagenet.resnet18(args=args) else: if args.arch=='dyresnet20': net=resnet_cifar.resnet20(num_classes=num_classes,args=args) elif args.arch=='dyresnet32': net=resnet_cifar.resnet32(num_classes=num_classes,args=args) elif args.arch=='dyresnet56': net=resnet_cifar.resnet56(num_classes=num_classes,args=args) if args.dataset=='imagenet':
print( ' **Train** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}' .format(top1=top1, top5=top5, error1=100 - top1.avg), log) return top1.avg, losses.avg print("=> creating model '{}'".format(args.arch)) if args.dataset == 'imagenet': if args.arch == 'resnet101': net = resnet_imagenet.resnet101() elif args.arch == 'resnet50': net = resnet_imagenet.resnet50() elif args.arch == 'resnet34': net = resnet_imagenet.resnet34() elif args.arch == 'resnet18': net = resnet_imagenet.resnet18() else: if args.arch == 'resnet110': net = models.resnet110(num_classes=10) elif args.arch == 'resnet56': net = models.resnet56(num_classes=10) elif args.arch == 'resnet32': net = models.resnet32(num_classes=10) elif args.arch == 'resnet20': net = models.resnet20(num_classes=10) if args.dataset == 'imagenet': if args.arch == 'resnet101':
def load_model(opt): if opt.from_modelzoo: if opt.pretrained: print("=> using pre-trained model '{}'".format(opt.arch)) model = models.__dict__[opt.model_def](pretrained=True) else: print("=> creating model '{}'".format(opt.arch)) model = models.__dict__[opt.model_def]() return model else: if opt.pretrained_file != '': model = torch.load(opt.pretrained_filedir) else: if opt.model_def == 'alexnet': model = alexnet.Net() if opt.cuda: model = model.cuda() elif opt.model_def == 'mobilenet': model = mobilenet.Net(nClasses=opt.nclasses, width_mult=opt.widthmult, gtp=opt.grouptype, gsz=opt.sp, expsz=opt.exp) if opt.cuda: model = model.cuda() elif opt.model_def == 'alexnetexpander': model = alexnetexpander.Net() if opt.cuda: model = model.cuda() elif opt.model_def == 'vgg16cifar': model = vggcifar.vgg16() if opt.cuda: model = model.cuda() elif opt.model_def == 'vgg16cifar_bn': model = vggcifar.vgg16_bn() if opt.cuda: model = model.cuda() elif opt.model_def == 'vgg16cifarexpander': model = vggcifarexpander.vgg16() if opt.cuda: model = model.cuda() elif opt.model_def == 'vgg16cifar_bnexpander': model = vggcifarexpander.vgg16_bn() if opt.cuda: model = model.cuda() elif opt.model_def == 'densenet_cifar': model = densenet_cifar.DenseNet3(opt.layers, opt.nclasses, opt.growth, reduction=opt.reduce, bottleneck=opt.bottleneck, dropRate=opt.droprate) if opt.cuda: model = model.cuda() elif opt.model_def == 'densenetgrouped_cifar': model = densenetgrouped_cifar.DenseNet3( opt.layers, opt.nclasses, opt.growth, reduction=opt.reduce, bottleneck=opt.bottleneck, dropRate=opt.droprate) if opt.cuda: model = model.cuda() elif opt.model_def == 'densenetexpander_cifar': model = densenetexpander_cifar.DenseNet3( opt.layers, opt.nclasses, opt.growth, reduction=opt.reduce, bottleneck=opt.bottleneck, dropRate=opt.droprate, expandSize=opt.expandSize) if opt.cuda: model = model.cuda() elif opt.model_def == 'densenet121': model = densenet.densenet121() if opt.cuda: model = model.cuda() elif opt.model_def == 'densenet169': model = densenet.densenet169() if opt.cuda: model = model.cuda() elif opt.model_def == 'densenet161': model = densenet.densenet161() if opt.cuda: model = model.cuda() elif opt.model_def == 'densenet201': model = densenet.densenet201() if opt.cuda: model = model.cuda() elif opt.model_def == 'densenetexpander121': model = densenetexpander.densenet121(expandSize=opt.expandSize) if opt.cuda: model = model.cuda() elif opt.model_def == 'densenetexpander169': model = densenetexpander.densenet169(expandSize=opt.expandSize) if opt.cuda: model = model.cuda() elif opt.model_def == 'densenetexpander161': model = densenetexpander.densenet161(expandSize=opt.expandSize) if opt.cuda: model = model.cuda() elif opt.model_def == 'densenetexpander201': model = densenetexpander.densenet201(expandSize=opt.expandSize) if opt.cuda: model = model.cuda() elif opt.model_def == 'resnet34': model = resnet.resnet34() if opt.cuda: model = model.cuda() elif opt.model_def == 'resnet50': model = resnet.resnet50() if opt.cuda: model = model.cuda() elif opt.model_def == 'resnet101': model = resnet.resnet101() if opt.cuda: model = model.cuda() elif opt.model_def == 'resnet152': model = resnet.resnet152() if opt.cuda: model = model.cuda() elif opt.model_def == 'resnetexpander34': model = resnetexpander.resnet34(opt.expandSize) if opt.cuda: model = model.cuda() elif opt.model_def == 'resnetexpander50': model = resnetexpander.resnet50(opt.expandSize) if opt.cuda: model = model.cuda() elif opt.model_def == 'resnetexpander101': model = resnetexpander.resnet101(opt.expandSize) if opt.cuda: model = model.cuda() elif opt.model_def == 'resnetexpander152': model = resnetexpander.resnet152(opt.expandSize) if opt.cuda: model = model.cuda() elif opt.model_def == 'resnet18': model = resnet.resnet18() if opt.cuda: model = model.cuda() elif opt.model_def == 'resnet50': model = resnet.resnet50() if opt.cuda: model = model.cuda() return model