def get_predictions(self, frames, scope): frames = self._reshape_to_conv(frames) cnn = CNN() if self.operation == 'training': cnn_output = cnn.create_model(frames, cnn.conv_filters, keep_prob=self.keep_prob) else: cnn_output = cnn.create_model(frames, cnn.conv_filters, keep_prob=1.0) cnn_output = self._reshape_to_rnn(cnn_output) rnn = RNN() rnn_output = rnn.create_model(cnn_output, scope + '_rnn') if self.is_attention: attention = Attention(self.batch_size) attention_output = attention.create_model(rnn_output, scope + '_attention') fc = FC(self.num_classes) outputs = fc.create_model(attention_output, scope + '_fc') else: rnn_output = rnn_output[:, -1, :] fc = FC(self.num_classes) outputs = fc.create_model(rnn_output, scope + '_fc') return outputs
def test_build_rnn(dim_in=31, dim_h=11, dim_out=None, i_net=None, o_net=None): print 'Building RNN' if i_net is None: i_net = dict( dim_h=17, n_layers=2, h_act='T.tanh', distribution='centered_binomial', weight_scale=0.1, ) if o_net is None: o_net = dict(dim_h=23, n_layers=2, h_act='T.tanh', weight_scale=0.1, distribution='continuous_binomial') nets = dict(i_net=i_net, o_net=o_net) trng = RandomStreams(101) mlps = RNN.mlp_factory(dim_in, dim_h, dim_out=dim_out, **nets) rnn = RNN(dim_in, dim_h, dim_out=dim_out, trng=trng, **mlps) rnn.set_tparams() print 'RNN formed correctly' return rnn
def test_vanilla_rnn(self): rnn = RNN(8000, 100, 8000) input_data = np.arange(8000) t0 = time.time() assert rnn.forward_propagation(input_data) tt = time.time() - t0 print("\nRNN forward propagation %s sec\n" % str(tt))
def main(args): glove_dir = args.glove_dir with open(glove_dir + '/config.json') as jsonData: rawData = json.load(jsonData) # merge the two configuration config = dict(rawData['config']) config.update(vars(args)) config['word_to_id_dict'] = rawData['word_to_id_dict'] config['glove_dir'] = glove_dir if args.debug is True: print('Loading corpus as sets') textfile = args.textfile train_data, dev_data, test_data = load_corpus_as_sets( textfile, rawData['word_to_id_dict']) if args.debug is True: print('Building graph') model = RNN(config) if args.debug is True: print('Training model') model.fit(train_data, dev_data) return model.log_dir
def run(model_id, state_id, data_id, lr): DATA_PATH = path[data_id] result_dir = EXP_DIR + models[model_id] + "/" + states[ state_id] + "/" + data[data_id].__name__ if not os.path.isdir(result_dir): os.makedirs(result_dir) result_log = result_dir + '/log.csv' if os.path.isfile(result_log): return FOLD_NUM = fold_num[data_id] acc = [] conf = Config() conf.lr = lr for fold in range(FOLD_NUM): conf.ckp_file = result_dir + '/fold_' + str(fold + 1) + '.ckpt' dataset = data[data_id](DATA_PATH, fold + 1) dataset.set_vector_type(int(states[state_id][-1])) rnn = RNN(conf, dataset, model_type=models[model_id]) vld_, pred, labs = rnn.run() # Save fold result save_result(pred, labs, result_log + '/fold' + str(fold)) acc.append(vld_) print(vld_) #return acc = np.array(acc) acc = np.append(acc, [np.mean(acc, axis=0)], axis=0) #Save to CSV File np.savetxt(result_log, acc, delimiter=',')
def __init__(self, nx, ny, nz, horizon, specs): super(VAE, self).__init__() self.nx = nx self.ny = ny self.nz = nz self.horizon = horizon self.rnn_type = rnn_type = specs.get('rnn_type', 'lstm') self.x_birnn = x_birnn = specs.get('x_birnn', True) self.e_birnn = e_birnn = specs.get('e_birnn', True) self.use_drnn_mlp = specs.get('use_drnn_mlp', False) self.nh_rnn = nh_rnn = specs.get('nh_rnn', 128) self.nh_mlp = nh_mlp = specs.get('nh_mlp', [300, 200]) # encode self.x_rnn = RNN(nx, nh_rnn, bi_dir=x_birnn, cell_type=rnn_type) self.e_rnn = RNN(ny, nh_rnn, bi_dir=e_birnn, cell_type=rnn_type) self.e_mlp = MLP(2 * nh_rnn, nh_mlp) self.e_mu = nn.Linear(self.e_mlp.out_dim, nz) self.e_logvar = nn.Linear(self.e_mlp.out_dim, nz) # decode if self.use_drnn_mlp: self.drnn_mlp = MLP(nh_rnn, nh_mlp + [nh_rnn], activation='tanh') self.d_rnn = RNN(ny + nz + nh_rnn, nh_rnn, cell_type=rnn_type) self.d_mlp = MLP(nh_rnn, nh_mlp) self.d_out = nn.Linear(self.d_mlp.out_dim, ny) self.d_rnn.set_mode('step')
def main(): add_pitch, add_roll, add_filter = False, False, True n_samples, step = 50, 50 load_data = LoadHAR(add_pitch=add_pitch, add_roll=add_roll, add_filter=add_filter, n_samples=n_samples, step=step) conf = ModelConfiguration() conf.load_datasets( [load_data.uci_mhealth, load_data.idash, load_data.wisdm1]) user_idx = -1 user = None # Create a time-string for our cv run if user is not None: train_idx = conf.users != user test_idx = conf.users == user conf.cv = ((train_idx, test_idx), ) for train_index, test_index in conf.cv: conf.user = user model = RNN(n_in=(n_samples, conf.n_features), n_hidden=[50, 50], dropout_probability=0.5, n_out=conf.n_classes, ccf=False, trans_func=rectify, out_func=softmax) if len(conf.cv) > 1: user_idx += 1 conf.user = conf.user_names[user_idx] # Generate root path and edit root_path = model.get_root_path() model.root_path = "%s_cv_%s_%s" % (root_path, conf.d, conf.user) paths.path_exists(model.root_path) rmdir(root_path) train = TrainModel(model=model, anneal_lr=0.75, anneal_lr_freq=50, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = False conf.run(train_index, test_index, lr=0.002, n_epochs=300, model=model, train=train, load_data=load_data)
def refine(dataloader: DataLoader, model: RNN, optimizer: torch.optim.Optimizer, loss_function: Union[SplitCrossEntropyLoss, CrossEntropyLoss], prior: Prior, bptt: int, use_apex: bool = False, amp=None, alpha: float = 0, beta: float = 0, importance: Union[int, float] = 100000, device: Union[torch.device, str] = 'cpu', **kwargs): model.train() batch = 0 with tqdm(dataloader, total=len(dataloader)) as pbar: for data, targets, seq_len, lang in pbar: data = data.squeeze(0).to(device) targets = targets.squeeze(0).to(device) lang = lang.to(device) lr2 = optimizer.param_groups[0]['lr'] optimizer.param_groups[0]['lr'] = lr2 * seq_len.item() / bptt hidden = model.init_hidden(batchsize=data.size(-1)) optimizer.zero_grad() output, hidden, rnn_hs, dropped_rnn_hs = model(data, hidden, lang, return_h=True) if isinstance(loss_function, SplitCrossEntropyLoss): loss = loss_function(model.decoder.weight, model.decoder.bias, output, targets) else: loss = loss_function(output, targets) penalty = importance * prior.penalty(model) loss += penalty # Activiation Regularization if alpha: loss = loss + sum(alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:]) # Temporal Activation Regularization (slowness) if beta: loss = loss + sum(beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:]) if use_apex: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() optimizer.param_groups[0]['lr'] = lr2 batch += 1 pbar.set_description( 'Loss {:5.2f} | bpc {:9.3f} | penalty {} |'.format(loss, loss / math.log(2), penalty.item()))
def multi_get_attention(self, frames): frames = self._reshape_to_conv(frames) cnn = CNN() cnn_output = cnn.create_model(frames, cnn.conv_filters) cnn_output = self._reshape_to_rnn(cnn_output) rnn = RNN() rnn_output = rnn.create_model(cnn_output) if self.is_attention: attention = Attention(self.batch_size) attention_output = attention.attention_analysis(rnn_output) return attention_output else: rnn_output = rnn_output[:, -1, :] fc = FC(self.num_classes) outputs = fc.create_model(rnn_output) return outputs
def __init__(self, config): super(MultiModalCore, self).__init__() self.config = config self.v_dim = config.v_dim self.q_emb_dim = config.q_emb_dim self.mmc_sizes = config.mmc_sizes self.mmc_layers = [] self.input_dropout = nn.Dropout(p=config.input_dropout) # Create MLP with early fusion in the first layer followed by batch norm for mmc_ix in range(len(config.mmc_sizes)): if mmc_ix == 0: # @author : Bhanuka if config.additive_fusion or config.multiplicative_fusion: in_s = self.v_dim elif config.concat_fusion: in_s = self.v_dim + self.q_emb_dim elif config.question_fusion: in_s = self.v_dim + (self.q_emb_dim * 2) self.batch_norm_fusion = nn.BatchNorm1d(in_s) else: in_s = config.mmc_sizes[mmc_ix - 1] out_s = config.mmc_sizes[mmc_ix] lin = LinearWithDropout(in_s, out_s, dropout_p=config.mmc_dropout) self.mmc_layers.append(lin) nonlin = getattr(nonlinearity, config.mmc_nonlinearity)() self.mmc_layers.append(nonlin) self.mmc_layers = nn.ModuleList(self.mmc_layers) self.batch_norm_mmc = nn.BatchNorm1d(self.mmc_sizes[-1]) # Aggregation # @author : Bhanuka if not self.config.disable_late_fusion: if not self.config.disable_batch_norm_for_late_fusion: if config.additive_fusion or config.multiplicative_fusion: self.batch_norm_before_aggregation = nn.BatchNorm1d(out_s) elif config.concat_fusion: out_s += config.q_emb_dim self.batch_norm_before_aggregation = nn.BatchNorm1d(out_s) elif config.question_fusion: out_s += 2 * config.q_emb_dim self.batch_norm_before_aggregation = nn.BatchNorm1d(out_s) # Transformer # @author : Bhanuka if config.transformer_aggregation: self.aggregator = transformer.TransformerModel( config.ta_ntoken, config.ta_ninp, config.ta_nheads, config.ta_nhid, config.ta_nencoders, config.ta_dropout) for p in self.aggregator.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) else: self.aggregator = RNN(out_s, config.mmc_aggregator_dim, nlayers=config.mmc_aggregator_layers, bidirect=True)
def evaluate(dataloader: DataLoader, model: RNN, loss_function: Union[SplitCrossEntropyLoss, CrossEntropyLoss], only_l: Union[torch.Tensor, int] = None, device: Union[torch.device, str] = 'cpu', **kwargs): model.eval() languages = dataloader.dataset.data.keys() if only_l: if only_l not in languages: raise ValueError(f'Language {only_l} does not exist in the dataset') local_losses = {only_l: 0} else: local_losses = {lang: 0 for lang in languages} batch = 0 prev_lang = "" with tqdm(dataloader, total=len(dataloader)) as pbar: for data, targets, seq_len, lang in pbar: data = data.squeeze(0).to(device) targets = targets.squeeze(0).to(device) lang = lang.to(device) if only_l and only_l != lang: continue if prev_lang != lang: prev_lang = lang hidden = model.init_hidden(batchsize=data.size(-1)) else: detach(hidden) with torch.no_grad(): output, hidden = model(data, hidden, lang) if isinstance(loss_function, SplitCrossEntropyLoss): loss = loss_function(model.decoder.weight, model.decoder.bias, output, targets) else: loss = loss_function(output, targets) local_losses[lang.item()] += len(data) * loss.data batch += 1 pbar.set_description('Evaluation, finished batch {} | loss {}'.format(batch, loss.data)) avg_loss = {lang: local_losses[lang].item() / len(dataloader.dataset.data[lang]) for lang in languages} if only_l is None else {only_l: local_losses[only_l].item() / len(dataloader.dataset.data[only_l])} total_loss = sum(avg_loss.values()) return total_loss / len(languages), avg_loss
def models(m): if m == 'rnn': return RNN(1, opt.hidden_size, opt.num_layers, 1, opt.cuda) elif m == 'lstm': return LSTM(1, opt.hidden_size, opt.num_layers, 1, opt.cuda) elif m == 'qrnn': return QRNN(1, opt.hidden_size, opt.num_layers, 1, opt.cuda) elif m == 'cnn': return CNN(1, opt.hidden_size, 1, opt.cuda)
def get_multi_predictions(self, frames): frames = self._reshape_to_conv(frames) cnn = CNN() if self.operation == 'training': cnn_output = cnn.create_model(frames, cnn.conv_filters, keep_prob=self.keep_prob) else: cnn_output = cnn.create_model(frames, cnn.conv_filters, keep_prob=1.0) cnn_output = self._reshape_to_rnn(cnn_output) rnn = RNN() arousal_rnn_output = rnn.create_model(cnn_output, 'arousal_rnn') valence_rnn_output = rnn.create_model(cnn_output, 'valence_rnn') dominance_rnn_output = rnn.create_model(cnn_output, 'dominance_rnn') if self.is_attention: attention = Attention(self.batch_size) arousal_attention_output = attention.create_model( arousal_rnn_output, 'arousal_attention') valence_attention_output = attention.create_model( valence_rnn_output, 'valence_attention') dominance_attention_output = attention.create_model( dominance_rnn_output, 'dominance_attention') fc = FC(self.num_classes) arousal_fc_outputs = fc.create_model(arousal_attention_output, 'arousal_fc') valence_fc_outputs = fc.create_model(valence_attention_output, 'valence_fc') dominance_fc_outputs = fc.create_model(dominance_attention_output, 'dominance_fc') else: arousal_rnn_output = arousal_rnn_output[:, -1, :] valence_rnn_output = valence_rnn_output[:, -1, :] dominance_rnn_output = dominance_rnn_output[:, -1, :] fc = FC(self.num_classes) arousal_fc_outputs = fc.create_model(arousal_rnn_output, 'arousal_fc') valence_fc_outputs = fc.create_model(valence_rnn_output, 'valence_fc') dominance_fc_outputs = fc.create_model(dominance_rnn_output, 'dominance_fc') return arousal_fc_outputs, valence_fc_outputs, dominance_fc_outputs
def __init__(self, out_dim, v_hdim, cnn_fdim, no_cnn=False, frame_shape=(3, 64, 64), mlp_dim=(300, 200), cnn_type='resnet', v_net_type='lstm', v_net_param=None, cnn_rs=True, causal=False, device=None): super().__init__() self.out_dim = out_dim self.cnn_fdim = cnn_fdim self.v_hdim = v_hdim self.no_cnn = no_cnn self.cnn_type = cnn_type self.frame_shape = frame_shape self.device = device if no_cnn: self.cnn = None else: self.frame_shape = (1, 32, 32, 64) """ only for ResNet based models """ if v_net_param is None: v_net_param = {} spec = v_net_param.get('spec', 'resnet18') self.cnn = P2PsfNet(cnn_fdim, device=self.device, running_stats=cnn_rs, spec=spec) self.v_net_type = v_net_type if v_net_type == 'lstm': self.v_net = RNN(cnn_fdim, v_hdim, v_net_type, bi_dir=not causal) elif v_net_type == 'tcn': if v_net_param is None: v_net_param = {} tcn_size = v_net_param.get('size', [64, 128]) dropout = v_net_param.get('dropout', 0.2) kernel_size = v_net_param.get('kernel_size', 3) assert tcn_size[-1] == v_hdim self.v_net = TemporalConvNet(cnn_fdim, tcn_size, kernel_size=kernel_size, dropout=dropout, causal=causal) if self.v_net_type is 'no_lstm': self.mlp = MLP(self.cnn_fdim, mlp_dim, 'relu') else: self.mlp = MLP(v_hdim, mlp_dim, 'relu') self.linear = nn.Linear(self.mlp.out_dim, out_dim)
def main_rnn(ckpt, filename): # Load Data for Inference data = np.load('./data/lpd_5_cleansed.npy') data = np.reshape(data, [21425, 400, -1]) dataset = DataSet(data) del data gc.collect() # Model Object model = RNN() # Restore Model Variables saver = tf.train.Saver() print('Restoring model from {} \n'.format(ckpt)) saver.restore(model.sess, ckpt) # Generate model.generate(dataset, filename) print("Write to midi file %s done.\n" % filename)
def __init__(self, cnn_feat_dim, state_dim, v_hdim=128, v_margin=10, v_net_type='lstm', v_net_param=None, s_hdim=None, s_net_type='id', dynamic_v=False): super().__init__() s_hdim = state_dim if s_hdim is None else s_hdim self.mode = 'test' self.cnn_feat_dim = cnn_feat_dim self.state_dim = state_dim self.v_net_type = v_net_type self.v_hdim = v_hdim self.v_margin = v_margin self.s_net_type = s_net_type self.s_hdim = s_hdim self.dynamic_v = dynamic_v self.out_dim = v_hdim + s_hdim if v_net_type == 'lstm': self.v_net = RNN(cnn_feat_dim, v_hdim, v_net_type, bi_dir=False) elif v_net_type == 'tcn': if v_net_param is None: v_net_param = {} tcn_size = v_net_param.get('size', [64, 128]) dropout = v_net_param.get('dropout', 0.2) kernel_size = v_net_param.get('kernel_size', 3) assert tcn_size[-1] == v_hdim self.v_net = TemporalConvNet(cnn_feat_dim, tcn_size, kernel_size=kernel_size, dropout=dropout, causal=True) if s_net_type == 'lstm': self.s_net = RNN(state_dim, s_hdim, s_net_type, bi_dir=False) self.v_out = None self.t = 0 # training only self.indices = None self.s_scatter_indices = None self.s_gather_indices = None self.v_gather_indices = None self.cnn_feat_ctx = None self.num_episode = None self.max_episode_len = None self.set_mode('test')
def main_rnn(): # Prepare Data data_file = './data/lpd_5_cleansed.npy' data = np.load(data_file) print(np.shape(data)) data = np.reshape(data, [21425, 400, -1]) print(np.shape(data)) print(data.dtype) dataset = read_data_sets(data) train_set = dataset.train develop_set = dataset.develop test_set = dataset.test # release space del data del dataset gc.collect() # Create Model Object model = RNN() # Train log_tag = "20180518-1030" model.train(train_set, develop_set, log_tag) plot_gif(fig_dir='./logdir/%s/results' % log_tag) # plot # Test model.test(test_set, log_tag)
def getModel(args): if args.model == "rnn": model = RNN(input_dim=args.input_dims, nclasses=args.nclasses, hidden_dims=args.hidden_dims, num_rnn_layers=args.num_layers, dropout=args.dropout, bidirectional=True) if args.model == "msresnet": model = MSResNet(input_channel=args.input_dims, layers=[1, 1, 1, 1], num_classes=args.nclasses, hidden_dims=args.hidden_dims) if args.model == "tempcnn": model = TempCNN(input_dim=args.input_dims, nclasses=args.nclasses, sequence_length=args.samplet, hidden_dims=args.hidden_dims, kernel_size=args.kernel_size) elif args.model == "transformer": hidden_dims = args.hidden_dims # 256 n_heads = args.n_heads # 8 n_layers = args.n_layers # 6 len_max_seq = args.samplet dropout = args.dropout d_inner = hidden_dims * 4 model = TransformerEncoder(in_channels=args.input_dims, len_max_seq=len_max_seq, d_word_vec=hidden_dims, d_model=hidden_dims, d_inner=d_inner, n_layers=n_layers, n_head=n_heads, d_k=hidden_dims // n_heads, d_v=hidden_dims // n_heads, dropout=dropout, nclasses=args.nclasses) if torch.cuda.is_available(): model = model.cuda() pytorch_total_params = sum(p.numel() for p in model.parameters()) print("initialized {} model ({} parameters)".format( args.model, pytorch_total_params)) return model
def __init__(self, nx, ny, nk, specs): super(NFDiag, self).__init__() self.nx = nx self.ny = ny self.nk = nk self.nh = nh = specs.get('nh_mlp', [300, 200]) self.nh_rnn = nh_rnn = specs.get('nh_rnn', 128) self.rnn_type = rnn_type = specs.get('rnn_type', 'gru') self.x_birnn = x_birnn = specs.get('x_birnn', False) self.fix_first = fix_first = specs.get('fix_first', False) self.nac = nac = nk - 1 if fix_first else nk self.x_rnn = RNN(nx, nh_rnn, bi_dir=x_birnn, cell_type=rnn_type) self.mlp = MLP(nh_rnn, nh) self.head_A = nn.Linear(nh[-1], ny * nac) self.head_b = nn.Linear(nh[-1], ny * nac)
def processParams(self, params): # Directory for experience directory = self.setupDir(params) # Set up generator generator = InputGenerator( self.gt, chunk_size=params["nb_timesteps"], batch_size=params["batch_size"], ) # Set up model model = RNN(params) model = model.model # Set up loss loss = CustomLoss( lambda_roll=params["lambda_roll"], lambda_pitch=params["lambda_pitch"], lambda_yaw=params["lambda_yaw"], lambda_thrust=params["lambda_thrust"], loss_func=params["loss_func"], ) decay = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, verbose=1, min_lr=1e-6) # Set up loss optimizer = Adam( lr=params["lr"], decay=params["decay"], beta_1=0.9, beta_2=0.999, epsilon=1e-08, ) # Set up callbacks mcp = ModelCheckpoint( directory + "/model.{epoch:03d}.h5", verbose=1, save_weights_only=False, ) lrp = PrintLR() #lrs = LearningRateScheduler(step_decay) callbacks = [mcp, lrp, decay] # return all params return generator, model, loss, optimizer, callbacks
def __init__(self, out_dim, v_hdim, cnn_fdim, dtype, device, frame_num=10, camera_num=3, frame_shape=(3, 224, 224), mlp_dim=(128, 64), v_net_type='lstm', v_net_param=None, bi_dir=False, training=True, is_dropout=False): super().__init__() self.out_dim = out_dim self.cnn_fdim = cnn_fdim self.v_hdim = v_hdim self.frame_shape = frame_shape self.camera_num = camera_num self.cnn = ResNet(cnn_fdim, running_stats=training) self.dtype = dtype self.device = device self.v_net_type = v_net_type self.v_net = RNN(cnn_fdim * 2, v_hdim, bi_dir=bi_dir) #self.v_net = nn.LSTM(cnn_fdim * 2, v_hdim, 2, batch_first=True, dropout=0.01, bidirectional=bi_dir) self.mlp = MLP(v_hdim, mlp_dim, 'leaky', is_dropout=is_dropout) self.linear = nn.Linear(self.mlp.out_dim, out_dim) self.softmax = nn.Softmax(dim=1)
def __init__(self, img_model, seq_model): super().__init__() self.img_model, self.seq_model = None, None if img_model == "slow_fusion": from models.slow_fusion import SlowFusion self.img_model = SlowFusion(3, 10, 64) elif img_model == "early_fusion": from models.early_fusion import EarlyFusion self.img_model = EarlyFusion(3, 10, 64) elif img_model == "late_fusion": from models.late_fusion import LateFusion self.img_model = LateFusion(3, 10, 64) elif img_model == "vanilla_cnn": from models.basic_cnn import BasicCNN self.img_model = BasicCNN(3, 64) else: from models.imagenet_model_wrapper import ImageNet_Model_Wrapper self.img_model = ImageNet_Model_Wrapper(img_model) if seq_model == "vanilla_rnn": from models.rnn import RNN self.seq_model = RNN(512, 256, 2) elif seq_model == "lstm": from models.lstm import LSTM self.seq_model = LSTM(512, 256, num_layers=2, dropout=0.1, bidirectional=True) elif seq_model == "lstmn": from models.lstmn import BiLSTMN self.seq_model = BiLSTMN(512, 256, num_layers=2, dropout=0.1, tape_depth=10) elif seq_model == "transformer_abs": from models.transformer import Transformer self.seq_model = Transformer(512, 8) elif seq_model == "stack_lstm": from models.stack_lstm import EncoderLSTMStack self.seq_model = EncoderLSTMStack(512, 256) # attention over seq_model output self.query_vector = nn.Parameter(torch.randn(1, 64)) # self.attn_w = nn.Bilinear(64, 512, 1) self.attn_w = nn.Parameter(torch.randn(64, 512)) self.linear1 = nn.Linear(512, 32) self.linear2 = nn.Linear(32, 1)
def __init__(self, out_dim, v_hdim, cnn_fdim, no_cnn=False, frame_shape=(3, 224, 224), mlp_dim=(300, 200), cnn_type='resnet', v_net_type='lstm', v_net_param=None, causal=False): super().__init__() self.out_dim = out_dim self.cnn_fdim = cnn_fdim self.v_hdim = v_hdim self.no_cnn = no_cnn self.frame_shape = frame_shape if no_cnn: self.cnn = None elif cnn_type == 'resnet': self.cnn = ResNet(cnn_fdim) elif cnn_type == 'mobile': self.cnn = MobileNet(cnn_fdim) self.v_net_type = v_net_type if v_net_type == 'lstm': self.v_net = RNN(cnn_fdim, v_hdim, v_net_type, bi_dir=not causal) elif v_net_type == 'tcn': if v_net_param is None: v_net_param = {} tcn_size = v_net_param.get('size', [64, 128]) dropout = v_net_param.get('dropout', 0.2) kernel_size = v_net_param.get('kernel_size', 3) assert tcn_size[-1] == v_hdim self.v_net = TemporalConvNet(cnn_fdim, tcn_size, kernel_size=kernel_size, dropout=dropout, causal=causal) self.mlp = MLP(v_hdim, mlp_dim, 'relu') self.linear = nn.Linear(self.mlp.out_dim, out_dim)
def __init__(self, cnn_feat_dim, v_hdim=128, v_margin=10, v_net_type='lstm', v_net_param=None, causal=False): super().__init__() self.mode = 'test' self.cnn_feat_dim = cnn_feat_dim self.v_net_type = v_net_type self.v_hdim = v_hdim self.v_margin = v_margin if v_net_type == 'lstm': self.v_net = RNN(cnn_feat_dim, v_hdim, v_net_type, bi_dir=not causal) elif v_net_type == 'tcn': if v_net_param is None: v_net_param = {} tcn_size = v_net_param.get('size', [64, 128]) dropout = v_net_param.get('dropout', 0.2) kernel_size = v_net_param.get('kernel_size', 3) assert tcn_size[-1] == v_hdim self.v_net = TemporalConvNet(cnn_feat_dim, tcn_size, kernel_size=kernel_size, dropout=dropout, causal=causal) self.v_out = None self.t = 0 # training only self.indices = None self.scatter_indices = None self.gather_indices = None self.cnn_feat_ctx = None
def __init__(self, config): super(MultiModalCore, self).__init__() self.config = config self.v_dim = config.v_dim self.q_emb_dim = config.q_emb_dim self.mmc_sizes = config.mmc_sizes self.mmc_layers = [] self.input_dropout = nn.Dropout(p=config.input_dropout) # Create MLP with early fusion in the first layer followed by batch norm for mmc_ix in range(len(config.mmc_sizes)): if mmc_ix == 0: if config.disable_early_fusion: in_s = self.v_dim else: in_s = self.v_dim + self.q_emb_dim self.batch_norm_fusion = nn.BatchNorm1d(in_s) else: in_s = config.mmc_sizes[mmc_ix - 1] out_s = config.mmc_sizes[mmc_ix] # lin = nn.Linear(in_s, out_s) lin = LinearWithDropout(in_s, out_s, dropout_p=config.mmc_dropout) self.mmc_layers.append(lin) nonlin = getattr(nonlinearity, config.mmc_nonlinearity)() self.mmc_layers.append(nonlin) self.mmc_layers = nn.ModuleList(self.mmc_layers) self.batch_norm_mmc = nn.BatchNorm1d(self.mmc_sizes[-1]) # Aggregation if not self.config.disable_late_fusion: out_s += config.q_emb_dim if not self.config.disable_batch_norm_for_late_fusion: self.batch_norm_before_aggregation = nn.BatchNorm1d(out_s) self.aggregator = RNN(out_s, config.mmc_aggregator_dim, nlayers=config.mmc_aggregator_layers, bidirect=True)
output_len = 12 if args.model_type == 'cnn': input_len = next(iter(trainer.train_dataloader))[0].shape[1] num_input_channels = next(iter(trainer.train_dataloader))[0].shape[2] encoder_params = CNN.generate_params() decoder_params = MLP.generate_params() model = CNN( num_input_channels=num_input_channels, input_size=input_len, output_len=output_len, encoder_params=encoder_params, decoder_params=decoder_params, ) elif args.model_type == 'rnn': num_input_channels = next(iter(trainer.train_dataloader))[0].shape[2] rnn_params = RNN.generate_params() model = RNN(output_len=output_len, num_input_channels=num_input_channels, rnn_params=rnn_params) elif args.model_type == 'crnn': input_len = next(iter(trainer.train_dataloader))[0].shape[1] num_input_channels = next(iter(trainer.train_dataloader))[0].shape[2] encoder_params = CNN.generate_params() rnn_params = RNN.generate_params() model = CRNN(input_len=input_len, output_len=output_len, num_input_channels=num_input_channels, encoder_params=encoder_params, rnn_params=rnn_params) elif args.model_type == 'mlp': input_len = reduce(lambda x, y: x * y,
def active_train(): init_learning_rate = params["LEARNING_RATE"] init_selection_size = params["SELECTION_SIZE"] init_data = {} init_data["train_y"] = copy.deepcopy(data["train_y"]) init_data["train_x"] = copy.deepcopy(data["train_x"]) average_accs = {} average_losses = {} if params["MODEL"] == "cnn": model = CNN() elif params["MODEL"] == "rnn": model = RNN(params, data) else: model = CNN(data, params) if params["CUDA"]: model.cuda() models["CLASSIFIER"] = model for j in range(params["N_AVERAGE"]): params["LEARNING_RATE"] = init_learning_rate params["SELECTION_SIZE"] = init_selection_size data["train_x"] = copy.deepcopy(init_data["train_x"]) data["train_y"] = copy.deepcopy(init_data["train_y"]) lg = None if params["LOG"]: lg = global_logger["lg"] start_accuracy = 100 / params["CLASS_SIZE"] lg.scalar_summary("test-acc", start_accuracy, 0) lg.scalar_summary("test-acc-avg", start_accuracy, 0) print("-" * 20, "Round {}".format(j + 1), "-" * 20) model.init_model() train_features = [] train_targets = [] distribution = {} for key in range(len(data["classes"])): distribution[key] = [] data["train_x"], data["train_y"] = shuffle(data["train_x"], data["train_y"]) if 500 % params["SELECTION_SIZE"] == 0: n_rounds = int(500 / params["SELECTION_SIZE"]) last_selection_size = params["SELECTION_SIZE"] else: n_rounds = int(500 / params["SELECTION_SIZE"]) + 1 last_selection_size = 500 % params["SELECTION_SIZE"] for i in range(n_rounds): if (n_rounds - 1 == i): params["SELECTION_SIZE"] = last_selection_size if params["SCORE_FN"] == "all": t1, t2 = select_all(model, lg, i) elif params["SCORE_FN"] == "entropy": t1, t2 = select_entropy(model, lg, i) elif params["SCORE_FN"] == "egl": t1, t2 = select_egl(model, lg, i) elif params["SCORE_FN"] == "random": t1, t2 = select_random(model, lg, i) train_features.extend(t1) train_targets.extend(t2) print("\n") model.init_model() model = train(model, train_features, train_targets) accuracy, loss, corrects, size = evaluate(model, i, mode="test") print("{:10s} loss: {:10.6f} acc: {:10.4f}%({}/{}) \n".format("test", loss, accuracy, corrects, size)) if i not in average_accs: average_accs[i] = [accuracy] else: average_accs[i].append(accuracy) if i not in average_losses: average_losses[i] = [loss] else: average_losses[i].append(loss) if params["LOG"]: lg.scalar_summary("test-acc", accuracy, len(train_features)) lg.scalar_summary( "test-acc-avg", sum(average_accs[i]) / len(average_accs[i]), len(train_features)) lg.scalar_summary("test-loss", loss, len(train_features)) lg.scalar_summary( "test-loss-avg", sum(average_losses[i]) / len(average_losses[i]), len(train_features)) for each in range(len(data["classes"])): val = train_targets.count(each) / len(train_targets) distribution[each].append(val) # count number of positive and negativ added to labeledpool. # nameOfFile = '{}/distribution{}.html'.format(lg.log_dir, j) best_model = {} return best_model
def main(): parser = argparse.ArgumentParser() parser.add_argument('--save', '-s', type=str, default='', help='save name to test') args = parser.parse_args() save = args.save # Prepare logger # - create logger with 'spam_application' logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # - create file handler which logs even debug messages fh = logging.FileHandler('test_result/{}.log'.format(save.split('/')[1]), mode='w') fh.setLevel(logging.INFO) # - create formatter and add it to the handlers formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) # - add the handlers to the logger logger.addHandler(fh) # Parse save name hp_dict = parse_hyparams(save.split('/')[1]) # Prepare datasets train, dev, test = reader.read(hp_dict['x'], hp_dict['y']) # Prepare linearizer and converter global l, c # Model setup if hp_dict['r'] == 0: l = linearizer.linearize_tree c = converter.convert params = { 'n_embed': hp_dict['x'] + 3, 'd': hp_dict['d'], 'k': hp_dict['k'] } if hp_dict['m'] == 'n': model = RNN(**params) elif hp_dict['m'] == 't': model = RNTN(**params) elif hp_dict['m'] == 'd': model = RNTNd(**params) elif hp_dict['m'] == 'c': model = RNTNc(**params) elif hp_dict['r'] == 1: l = linearizer.linearize_tree_relational c = converter.convert_relational params = { 'n_embed': hp_dict['x'] * 2, 'd': hp_dict['d'], 'k': hp_dict['k'] } if hp_dict['m'] == 'rn': model = RNNr(**params) elif hp_dict['m'] == 'rt': params['mp'] = hp_dict['v'] model = RNTNr(**params) elif hp_dict['m'] == 'rd': params['mp'] = hp_dict['v'] model = RNTNrd(**params) elif hp_dict['m'] == 'rc': params['mp'] = hp_dict['v'] model = RNTNrc(**params) elif hp_dict['m'] == 'rs': model = RNTNrs(**params, p=hp_dict['p'], q=hp_dict['q']) print(save) serializers.load_hdf5(save, model) model = L.Classifier(model) model.to_cpu() # Dev logger.info('---dev---') accuracy = get_accuracy(model, dev) logger.info('dev: {}'.format(accuracy)) # Test logger.info('---test---') for length, a_bin in enumerate(test[1:]): accuracy = get_accuracy(model, a_bin) logger.info('test {} : {}'.format(length + 1, accuracy))
def main(): """ parser = argparse.ArgumentParser() parser.add_argument('--save', '-s', type=str, default='', help='save name to test') args = parser.parse_args() """ # Parse save file name path = './trained_model_12-11' saves = os.listdir(path) for save in saves: # Prepare logger # - create logger with 'spam_application' logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # - create file handler which logs even debug messages fh = logging.FileHandler('test_result/{}.log'.format(save), mode='w') fh.setLevel(logging.INFO) # - create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) # - add the handlers to the logger logger.addHandler(fh) # Parse save name hp_dict = parse_hyparams(save) # Prepare datasets train, dev, test = reader.read(hp_dict['x'], hp_dict['y']) # Prepare linearizer and converter global l, c # Model setup if hp_dict['r'] == 0: l = linearizer.linearize_tree c = converter.convert params = {'n_embed': hp_dict['x'] + 3, 'd': hp_dict['d'], 'k': hp_dict['k']} if hp_dict['m'] == 'n': model = RNN(**params) elif hp_dict['m'] == 't': model = RNTN(**params) elif hp_dict['m'] == 'd': model = RNTNd(**params) elif hp_dict['m'] == 'c': model = RNTNc(**params) elif hp_dict['r'] == 1: l = linearizer.linearize_tree_relational c = converter.convert_relational params = {'n_embed': hp_dict['x'] * 2, 'd': hp_dict['d'], 'k': hp_dict['k']} if hp_dict['m'] == 'rn': model = RNNr(**params) elif hp_dict['m'] == 'rt': model = RNTNr(**params) elif hp_dict['m'] == 'rd': model = RNTNrd(**params) elif hp_dict['m'] == 'rc': model = RNTNrc(**params) elif hp_dict['m'] == 'rs': model = RNTNrs(**params, p=hp_dict['p'], q=hp_dict['q']) print(save) serializers.load_hdf5(path + '/' + save, model) model = L.Classifier(model) model.to_cpu() m = hp_dict['m'] w = hp_dict['w'] i = hp_dict['i'] - 1 p = hp_dict['p'] # Dev logger.info('---dev---') accuracy = get_accuracy(model, dev) logger.info('dev: {}'.format(accuracy)) if m == 'rs': results[p][w][0][i] = accuracy else: results[m][w][0][i] = accuracy # Test logger.info('---test---') for length, a_bin in enumerate(test[1:]): accuracy = get_accuracy(model, a_bin) logger.info('test {} : {}'.format(length + 1, accuracy)) if hp_dict['m'] == 'rs': results[p][w][length + 1][i] = accuracy else: results[m][w][length + 1][i] = accuracy logger.removeHandler(fh) logger.setLevel(logging.INFO) fh = logging.FileHandler('test_result/final.log', mode='w') fh.setLevel(logging.INFO) fh.setFormatter(formatter) logger.addHandler(fh) for m in results.keys(): logger.info('') logger.info('m: {}'.format(m)) for w in results[m].keys(): logger.info('w: {}---------'.format(w)) for j, accuracies in enumerate(results[m][w]): print(accuracies) std = np.std(accuracies) mean = np.mean(accuracies) if j == 0: logger.info('dev: {} ({})'.format(mean, std)) else: logger.info('test {} : {} ({})'.format(j, mean, std)) with open('final.p', 'wb') as f: pickle.dump(results, f)
results_dir = dir + '/results' rnn_dir = dir + '/' + args.model_dir config = vars(args) config['log_dir'] = rnn_dir config['restore_embedding'] = False config['seq_length'] = None input_words = clean_text(config['inputs']) # if args.use_server is True: # with open('clusterSpec.json') as f: # clusterSpec = json.load(f) # config['target'] = 'grpc://' + clusterSpec['server'][0] # pass rnn = RNN(config) y = rnn.predict(input_words, config) print('__BBB_START__') # Marker for the Regexp used in the App, do not remove json = json.dumps({ 'config': { 'inputs': args.inputs, 'random': args.random, 'temperature': args.temperature, 'top_k': args.top_k, 'nb_word': args.nb_word, 'nb_sentence': args.nb_sentence, 'nb_para': args.nb_para, }, 'output': ' '.join(y) }) print(json)