def load_model(checkpoint_file): checkpoint = torch.load(checkpoint_file) args = checkpoint['args'] model = Subsampling_Model(out_directions=args.out_directions, dir_decimation_rate=args.dir_decimation_rate, direction_learning=args.direction_learning, initialization=args.initialization, chans=args.num_chans, num_pool_layers=args.num_pools, drop_prob=args.drop_prob).to(args.device) if args.data_parallel: model = torch.nn.DataParallel(model) model.load_state_dict(checkpoint['model']) return model
def load_model(checkpoint): checkpoint = torch.load(checkpoint) args = checkpoint['args'] model = Subsampling_Model(in_chans=15, out_chans=1, chans=args.num_chans, num_pool_layers=args.num_pools, drop_prob=args.drop_prob, decimation_rate=args.decimation_rate, res=args.resolution, trajectory_learning=args.trajectory_learning, initialization=args.initialization, SNR=args.SNR).to(args.device) if args.data_parallel: model = torch.nn.DataParallel(model) model.load_state_dict(checkpoint['model']) return model
def build_model(args): model = Subsampling_Model(out_directions=args.out_directions, dir_decimation_rate=args.dir_decimation_rate, direction_learning=args.direction_learning, initialization=args.initialization, chans=args.num_chans, num_pool_layers=args.num_pools, drop_prob=args.drop_prob).to(args.device) return model
def build_model(args): model = Subsampling_Model( in_chans=1, out_chans=1, chans=args.num_chans, num_pool_layers=args.num_pools, drop_prob=args.drop_prob, decimation_rate=args.decimation_rate, res=args.resolution, trajectory_learning=args.trajectory_learning, initialization=args.initialization, SNR=args.SNR, n_shots=args.n_shots, interp_gap=args.interp_gap ).to(args.device) return model