batchdata = numpy.asarray(test_data, dtype=theano.config.floatX) delay = 0 numpy_rng = numpy.random.RandomState(123) n_dim = [test_data.shape[1]] dbn_tadbn = TADBN(numpy_rng=numpy_rng, n_ins=[n_dim], hidden_layers_sizes=[100], sparse=0.0, delay=delay, learning_rate=0.01) dbn_tadbn.pretrain(batchdata, plot_interval=5, static_epochs=50, save_interval=10, ae_epochs=0, all_epochs=0, batch_size=5) up = dbn_tadbn.propup(batchdata, static=True) up = np.array(up) print up generated_series = dbn_tadbn.generate(batchdata, n_samples=40) plt.figure() plt.subplot(211) plt.plot(test_data[:generated_series.shape[1]]) plt.subplot(212) plt.plot(generated_series[0]) plt.show()
import sys sys.path.append('..') from models.tadbn import TADBN import numpy import numpy as np import theano test_data = np.array([np.sin(np.arange(400) * 0.2), np.sin(np.arange(400) * 0.4)]).T batchdata = numpy.asarray(test_data, dtype=theano.config.floatX) delay = 3 numpy_rng = numpy.random.RandomState(123) n_dim = [test_data.shape[1]] dbn_tadbn = TADBN(numpy_rng=numpy_rng, n_ins=[n_dim], hidden_layers_sizes=[10], sparse=0.0, delay=delay, learning_rate=0.01) up = dbn_tadbn.propup(batchdata, static=False) up = np.array(up) print up.shape, batchdata.shape