""" CMU DICT """ batch_size = 64 min_seq_len_X = 3 max_seq_len_X = 20 min_seq_len_y = min_seq_len_X max_seq_len_y = max_seq_len_X data_folder = os.path.join("..", "..", "data", "cmudict", "ready", "gpt2") src_lookup_prefix = os.path.join("..", "..", "data", "cmudict", "lookup", "gpt2","src") tgt_lookup_prefix = os.path.join("..", "..", "data", "cmudict", "lookup", "gpt2","tgt") src_lookup = Lookup(type="gpt2") src_lookup.load(src_lookup_prefix) tgt_lookup = Lookup(type="gpt2") tgt_lookup.load(tgt_lookup_prefix) train_loader, valid_loader, test_loader = loader(data_folder, batch_size, src_lookup, tgt_lookup, min_seq_len_X, max_seq_len_X, min_seq_len_y, max_seq_len_y) print("Loading done, train instances {}, dev instances {}, test instances {}, vocab size src/tgt {}/{}\n".format( len(train_loader.dataset.X), len(valid_loader.dataset.X), len(test_loader.dataset.X), len(src_lookup), len(tgt_lookup))) # ###################################################################### # GPU SELECTION ######################################################## device = select_processing_device(verbose = True) # ###################################################################### # MODEL TRAINING ####################################################### aux_loss_weight = 0.1
#data_folder = os.path.join("..", "..", "data", "task2", "ready", "gpt2") #src_lookup_prefix = os.path.join("..", "..", "data", "task2", "lookup", "gpt2","src") #tgt_lookup_prefix = os.path.join("..", "..", "data", "task2", "lookup", "gpt2","tgt") #src_lookup = Lookup(type="gpt2") #tgt_lookup = Lookup(type="gpt2") data_folder = os.path.join("..", "..", "data", "task2", "ready", "bpe") src_lookup_prefix = os.path.join("..", "..", "data", "task2", "lookup", "bpe","src-Business_Ethics-1024") tgt_lookup_prefix = os.path.join("..", "..", "data", "task2", "lookup", "bpe","src-Business_Ethics-1024") src_lookup = Lookup(type="bpe") tgt_lookup = Lookup(type="bpe") src_lookup.load(src_lookup_prefix) tgt_lookup.load(tgt_lookup_prefix) train_loader, valid_loader, test_loader = loader(data_folder, batch_size, src_lookup, tgt_lookup, min_seq_len_X, max_seq_len_X, min_seq_len_y, max_seq_len_y, custom_filename_prefix = "Business_Ethics_") print("Loading done, train instances {}, dev instances {}, test instances {}, vocab size src/tgt {}/{}\n".format( len(train_loader.dataset.X), len(valid_loader.dataset.X), len(test_loader.dataset.X), len(src_lookup), len(tgt_lookup))) # ###################################################################### # GPU SELECTION ######################################################## device = select_processing_device(verbose = True) # ###################################################################### # MODEL TRAINING ####################################################### coverage_loss_weight = 0.001
# DATA PREPARATION ###################################################### print("Loading data ...") batch_size = 256 min_seq_len_X = 10 max_seq_len_X = 50 min_seq_len_y = min_seq_len_X max_seq_len_y = max_seq_len_X #from data.roen.loader import loader #data_folder = os.path.join("..", "..", "data", "roen", "ready", "setimes.8K.bpe") #from data.fren.loader import loader from models.util.loaders.standard import loader data_folder = os.path.join("..", "..", "data", "fren", "ready") train_loader, valid_loader, test_loader, src_w2i, src_i2w, tgt_w2i, tgt_i2w = loader( data_folder, batch_size, min_seq_len_X, max_seq_len_X, min_seq_len_y, max_seq_len_y) print( "Loading done, train instances {}, dev instances {}, test instances {}, vocab size src/tgt {}/{}\n" .format(len(train_loader.dataset.X), len(valid_loader.dataset.X), len(test_loader.dataset.X), len(src_i2w), len(tgt_i2w))) #train_loader.dataset.X = train_loader.dataset.X[0:800] #train_loader.dataset.y = train_loader.dataset.y[0:800] #valid_loader.dataset.X = valid_loader.dataset.X[0:100] #valid_loader.dataset.y = valid_loader.dataset.y[0:100] # ###################################################################### # GPU SELECTION ######################################################## if torch.cuda.is_available():