示例#1
0
def main():
    best_acc = 0

    opt = parse_option()

    # tensorboard logger
    logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)

    # dataloader
    if opt.dataset == 'cifar100':
        if opt.distill in ['crd', 'ml_cpc', 'cpc']:
            train_loader, val_loader, n_data = get_cifar100_dataloaders_sample(
                batch_size=opt.batch_size,
                num_workers=opt.num_workers,
                k=opt.nce_k,
                mode=opt.mode)
        else:
            train_loader, val_loader, n_data = get_cifar100_dataloaders(
                batch_size=opt.batch_size,
                num_workers=opt.num_workers,
                is_instance=True)
        n_cls = 100
    else:
        raise NotImplementedError(opt.dataset)

    # model
    model_t = load_teacher(opt.path_t, n_cls)
    model_s = model_dict[opt.model_s](num_classes=n_cls)

    data = torch.randn(2, 3, 32, 32)
    model_t.eval()
    model_s.eval()
    feat_t, _ = model_t(data, is_feat=True)
    feat_s, _ = model_s(data, is_feat=True)

    module_list = nn.ModuleList([])
    module_list.append(model_s)
    trainable_list = nn.ModuleList([])
    trainable_list.append(model_s)

    criterion_cls = nn.CrossEntropyLoss()
    criterion_div = DistillKL(opt.kd_T)
    if opt.distill == 'kd':
        criterion_kd = DistillKL(opt.kd_T)
    elif opt.distill == 'hint':
        criterion_kd = HintLoss()
        regress_s = ConvReg(feat_s[opt.hint_layer].shape,
                            feat_t[opt.hint_layer].shape)
        module_list.append(regress_s)
        trainable_list.append(regress_s)
    elif opt.distill == 'crd':
        opt.s_dim = feat_s[-1].shape[1]
        opt.t_dim = feat_t[-1].shape[1]
        opt.n_data = n_data
        criterion_kd = CRDLoss(opt)
        module_list.append(criterion_kd.embed_s)
        module_list.append(criterion_kd.embed_t)
        trainable_list.append(criterion_kd.embed_s)
        trainable_list.append(criterion_kd.embed_t)
    elif opt.distill == 'cpc':
        opt.s_dim = feat_s[-1].shape[1]
        opt.t_dim = feat_t[-1].shape[1]
        opt.n_data = n_data
        criterion_kd = CPCLoss(opt)
        module_list.append(criterion_kd.embed_s)
        module_list.append(criterion_kd.embed_t)
        trainable_list.append(criterion_kd.embed_s)
        trainable_list.append(criterion_kd.embed_t)
    elif opt.distill == 'ml_cpc':
        opt.s_dim = feat_s[-1].shape[1]
        opt.t_dim = feat_t[-1].shape[1]
        opt.n_data = n_data
        criterion_kd = MLCPCLoss(opt)
        module_list.append(criterion_kd.embed_s)
        module_list.append(criterion_kd.embed_t)
        trainable_list.append(criterion_kd.embed_s)
        trainable_list.append(criterion_kd.embed_t)
    elif opt.distill == 'attention':
        criterion_kd = Attention()
    elif opt.distill == 'nst':
        criterion_kd = NSTLoss()
    elif opt.distill == 'similarity':
        criterion_kd = Similarity()
    elif opt.distill == 'rkd':
        criterion_kd = RKDLoss()
    elif opt.distill == 'pkt':
        criterion_kd = PKT()
    elif opt.distill == 'kdsvd':
        criterion_kd = KDSVD()
    elif opt.distill == 'correlation':
        criterion_kd = Correlation()
        embed_s = LinearEmbed(feat_s[-1].shape[1], opt.feat_dim)
        embed_t = LinearEmbed(feat_t[-1].shape[1], opt.feat_dim)
        module_list.append(embed_s)
        module_list.append(embed_t)
        trainable_list.append(embed_s)
        trainable_list.append(embed_t)
    elif opt.distill == 'vid':
        s_n = [f.shape[1] for f in feat_s[1:-1]]
        t_n = [f.shape[1] for f in feat_t[1:-1]]
        criterion_kd = nn.ModuleList(
            [VIDLoss(s, t, t) for s, t in zip(s_n, t_n)])
        # add this as some parameters in VIDLoss need to be updated
        trainable_list.append(criterion_kd)
    elif opt.distill == 'abound':
        s_shapes = [f.shape for f in feat_s[1:-1]]
        t_shapes = [f.shape for f in feat_t[1:-1]]
        connector = Connector(s_shapes, t_shapes)
        # init stage training
        init_trainable_list = nn.ModuleList([])
        init_trainable_list.append(connector)
        init_trainable_list.append(model_s.get_feat_modules())
        criterion_kd = ABLoss(len(feat_s[1:-1]))
        init(model_s, model_t, init_trainable_list, criterion_kd, train_loader,
             logger, opt)
        # classification
        module_list.append(connector)
    elif opt.distill == 'factor':
        s_shape = feat_s[-2].shape
        t_shape = feat_t[-2].shape
        paraphraser = Paraphraser(t_shape)
        translator = Translator(s_shape, t_shape)
        # init stage training
        init_trainable_list = nn.ModuleList([])
        init_trainable_list.append(paraphraser)
        criterion_init = nn.MSELoss()
        init(model_s, model_t, init_trainable_list, criterion_init,
             train_loader, logger, opt)
        # classification
        criterion_kd = FactorTransfer()
        module_list.append(translator)
        module_list.append(paraphraser)
        trainable_list.append(translator)
    elif opt.distill == 'fsp':
        s_shapes = [s.shape for s in feat_s[:-1]]
        t_shapes = [t.shape for t in feat_t[:-1]]
        criterion_kd = FSP(s_shapes, t_shapes)
        # init stage training
        init_trainable_list = nn.ModuleList([])
        init_trainable_list.append(model_s.get_feat_modules())
        init(model_s, model_t, init_trainable_list, criterion_kd, train_loader,
             logger, opt)
        # classification training
        pass
    else:
        raise NotImplementedError(opt.distill)

    criterion_list = nn.ModuleList([])
    criterion_list.append(criterion_cls)  # classification loss
    criterion_list.append(
        criterion_div)  # KL divergence loss, original knowledge distillation
    criterion_list.append(criterion_kd)  # other knowledge distillation loss

    # optimizer
    optimizer = optim.SGD(trainable_list.parameters(),
                          lr=opt.learning_rate,
                          momentum=opt.momentum,
                          weight_decay=opt.weight_decay)

    # append teacher after optimizer to avoid weight_decay
    module_list.append(model_t)

    if torch.cuda.is_available():
        module_list.cuda()
        criterion_list.cuda()
        cudnn.benchmark = True

    # validate teacher accuracy
    teacher_acc, _, _ = validate(val_loader, model_t, criterion_cls, opt)
    print('teacher accuracy: ', teacher_acc)

    # routine
    for epoch in range(1, opt.epochs + 1):

        adjust_learning_rate(epoch, opt, optimizer)
        print("==> training...")

        time1 = time.time()
        train_acc, train_loss = train(epoch, train_loader, module_list,
                                      criterion_list, optimizer, opt)
        time2 = time.time()
        print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))

        logger.log_value('train_acc', train_acc, epoch)
        logger.log_value('train_loss', train_loss, epoch)

        test_acc, tect_acc_top5, test_loss = validate(val_loader, model_s,
                                                      criterion_cls, opt)

        logger.log_value('test_acc', test_acc, epoch)
        logger.log_value('test_loss', test_loss, epoch)
        logger.log_value('test_acc_top5', tect_acc_top5, epoch)

        # save the best model
        if test_acc > best_acc:
            best_acc = test_acc
            state = {
                'epoch': epoch,
                'model': model_s.state_dict(),
                'best_acc': best_acc,
            }
            save_file = os.path.join(opt.save_folder,
                                     '{}_best.pth'.format(opt.model_s))
            print('saving the best model!')
            torch.save(state, save_file)

        # regular saving
        if epoch % opt.save_freq == 0:
            print('==> Saving...')
            state = {
                'epoch': epoch,
                'model': model_s.state_dict(),
                'accuracy': test_acc,
            }
            save_file = os.path.join(
                opt.save_folder, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
            torch.save(state, save_file)

    # This best accuracy is only for printing purpose.
    # The results reported in the paper/README is from the last epoch.
    print('best accuracy:', best_acc)

    # save model
    state = {
        'opt': opt,
        'model': model_s.state_dict(),
    }
    save_file = os.path.join(opt.save_folder,
                             '{}_last.pth'.format(opt.model_s))
    torch.save(state, save_file)
def main():

    best_acc = 0

    opt = parse_option()

    # tensorboard logger
    logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)
    if os.path.exists('./save/log/'):
        pass
    else:
        os.mkdir('./save/log/')
    log = open(os.path.join('./save/log/', 'log_{}.txt'.format(opt.path_config[-11:-7])), 'w')
    print_log('save path : {}'.format("./save/"), log)
    # dataloader
    if opt.dataset == 'imagenet':
        if opt.distill in ['crd']:
            train_loader, val_loader, n_data = get_dataloader_sample(batch_size=opt.batch_size,
                                                                               num_workers=opt.num_workers,
                                                                               k=opt.nce_k,
                                                                               mode=opt.mode)
        else:
            train_loader, val_loader, n_data = get_imagenet_dataloader(batch_size=opt.batch_size,
                                                                        num_workers=opt.num_workers,
                                                                        is_instance=True)
            '''import torchvision.datasets as dset
            import torchvision.transforms as transforms
            data_folder = '/gdata/ImageNet2012'
            traindir = os.path.join(data_folder, 'train')
            valdir = os.path.join(data_folder, 'val')
            normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                             std=[0.229, 0.224, 0.225])
            train_data1 = dset.ImageFolder(traindir, transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ]))
            valid_data = dset.ImageFolder(valdir, transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ]))
            train_loader = torch.utils.data.DataLoader(
                train_data1, batch_size=opt.batch_size, shuffle=True,
                pin_memory=True, num_workers=opt.workers)

            val_loader = torch.utils.data.DataLoader(
                valid_data, batch_size=opt.batch_size, shuffle=True,
                pin_memory=True, num_workers=opt.workers)
            n_data = len(train_data1)'''
        n_cls = 1000
    else:
        raise NotImplementedError(opt.dataset)
    print("##")
    # model
    model_t = EfficientNet.from_pretrained('efficientnet-b0',weights_path='./pretrain_efficientNet/pretrain_efficientNet.pth')
    #torch.save(model_t.state_dict(), './pretrain_efficientNet/pretrain_efficientNet.pt')
    from proxyless_nas.jj import get_proxyless_model
    model_s = get_proxyless_model(net_config_path=opt.path_config)
    gpus = [0, 1, 2, 3]
    torch.cuda.set_device('cuda:{}'.format(gpus[0]))


    data = torch.randn(2, 3, 224, 224)
    model_t.eval()
    model_s.eval()
    feat_t, _ = model_t(data, is_feat=True)
    feat_s, _ = model_s(data, is_feat=True)

    module_list = nn.ModuleList([])
    module_list.append(model_s)
    trainable_list = nn.ModuleList([])
    trainable_list.append(model_s)

    criterion_cls = nn.CrossEntropyLoss()
    criterion_div = DistillKL(opt.kd_T)
    if opt.distill == 'kd':
        criterion_kd = DistillKL(opt.kd_T)
    elif opt.distill == 'hint':
        criterion_kd = HintLoss()
        regress_s = ConvReg(feat_s[opt.hint_layer].shape, feat_t[opt.hint_layer].shape)
        module_list.append(regress_s)
        trainable_list.append(regress_s)
    elif opt.distill == 'crd':
        opt.s_dim = feat_s[-1].shape[1]
        opt.t_dim = feat_t[-1].shape[1]
        opt.n_data = n_data
        criterion_kd = CRDLoss(opt)
        module_list.append(criterion_kd.embed_s)
        module_list.append(criterion_kd.embed_t)
        trainable_list.append(criterion_kd.embed_s)
        trainable_list.append(criterion_kd.embed_t)
    elif opt.distill == 'attention':
        criterion_kd = Attention()
    elif opt.distill == 'nst':
        criterion_kd = NSTLoss()
    elif opt.distill == 'similarity':
        criterion_kd = Similarity()
    elif opt.distill == 'rkd':
        criterion_kd = RKDLoss()
    elif opt.distill == 'pkt':
        criterion_kd = PKT()
    elif opt.distill == 'kdsvd':
        criterion_kd = KDSVD()
    elif opt.distill == 'correlation':
        criterion_kd = Correlation()
        embed_s = LinearEmbed(feat_s[-1].shape[1], opt.feat_dim)
        embed_t = LinearEmbed(feat_t[-1].shape[1], opt.feat_dim)
        module_list.append(embed_s)
        module_list.append(embed_t)
        trainable_list.append(embed_s)
        trainable_list.append(embed_t)
    elif opt.distill == 'vid':
        s_n = [f.shape[1] for f in feat_s[1:-1]]
        t_n = [f.shape[1] for f in feat_t[1:-1]]
        criterion_kd = nn.ModuleList(
            [VIDLoss(s, t, t) for s, t in zip(s_n, t_n)]
        )
        # add this as some parameters in VIDLoss need to be updated
        trainable_list.append(criterion_kd)
    elif opt.distill == 'abound':
        s_shapes = [f.shape for f in feat_s[1:-1]]
        t_shapes = [f.shape for f in feat_t[1:-1]]
        connector = Connector(s_shapes, t_shapes)
        # init stage training
        init_trainable_list = nn.ModuleList([])
        init_trainable_list.append(connector)
        init_trainable_list.append(model_s.get_feat_modules())
        criterion_kd = ABLoss(len(feat_s[1:-1]))
        init(model_s, model_t, init_trainable_list, criterion_kd, train_loader, logger, opt)
        # classification
        module_list.append(connector)
    elif opt.distill == 'factor':
        s_shape = feat_s[-2].shape
        t_shape = feat_t[-2].shape
        paraphraser = Paraphraser(t_shape)
        translator = Translator(s_shape, t_shape)
        # init stage training
        init_trainable_list = nn.ModuleList([])
        init_trainable_list.append(paraphraser)
        criterion_init = nn.MSELoss()
        init(model_s, model_t, init_trainable_list, criterion_init, train_loader, logger, opt)
        # classification
        criterion_kd = FactorTransfer()
        module_list.append(translator)
        module_list.append(paraphraser)
        trainable_list.append(translator)
    elif opt.distill == 'fsp':
        s_shapes = [s.shape for s in feat_s[:-1]]
        t_shapes = [t.shape for t in feat_t[:-1]]
        criterion_kd = FSP(s_shapes, t_shapes)
        # init stage training
        init_trainable_list = nn.ModuleList([])
        init_trainable_list.append(model_s.get_feat_modules())
        init(model_s, model_t, init_trainable_list, criterion_kd, train_loader, logger, opt)
        # classification training
        pass
    else:
        raise NotImplementedError(opt.distill)

    criterion_list = nn.ModuleList([])
    criterion_list.append(criterion_cls)    # classification loss
    criterion_list.append(criterion_div)    # KL divergence loss, original knowledge distillation
    criterion_list.append(criterion_kd)     # other knowledge distillation loss

    # optimizer
    optimizer = optim.SGD(trainable_list.parameters(),
                          lr=opt.learning_rate,
                          momentum=opt.momentum,
                          weight_decay=opt.weight_decay)

    # append teacher after optimizer to avoid weight_decay
    module_list.append(model_t)

    if torch.cuda.is_available():
        module_list.cuda()
        criterion_list.cuda()
        cudnn.benchmark = True

    # validate teacher accuracy
    teacher_acc, _, _ = validate(val_loader, model_t, criterion_cls, opt,log)
    print('teacher accuracy: ', teacher_acc)
    print_log("teacher accuracy:{}".format(teacher_acc), log)

    # routine
    for epoch in range(1, opt.epochs + 1):

        adjust_learning_rate(epoch, opt, optimizer)
        print("==> training...")
        print_log("==> training...", log)

        time1 = time.time()
        train_acc, train_loss = train(epoch, train_loader, module_list, criterion_list, optimizer, opt,log)
        time2 = time.time()
        print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
        print_log('epoch {}, total time {:.2f}'.format(epoch, time2 - time1), log)

        logger.log_value('train_acc', train_acc, epoch)
        logger.log_value('train_loss', train_loss, epoch)

        test_acc, tect_acc_top5, test_loss = validate(val_loader, model_s, criterion_cls, opt,log)

        logger.log_value('test_acc', test_acc, epoch)
        logger.log_value('test_loss', test_loss, epoch)
        logger.log_value('test_acc_top5', tect_acc_top5, epoch)

        # save the best model
        if test_acc > best_acc:
            best_acc = test_acc
            state = {
                'epoch': epoch,
                'model': model_s.state_dict(),
                'best_acc': best_acc,
            }
            save_file = os.path.join(opt.save_folder, '{}_best.pth'.format(opt.model_s))
            print('saving the best model!')
            print_log('saving the best model!', log)
            torch.save(state, save_file)

        # regular saving
        if epoch % opt.save_freq == 0 or epoch<10:
            print('==> Saving...')
            state = {
                'epoch': epoch,
                'model': model_s.state_dict(),
                'accuracy': test_acc,
            }
            save_file = os.path.join(opt.save_folder, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
            torch.save(state, save_file)

    # This best accuracy is only for printing purpose.
    # The results reported in the paper/README is from the last epoch.
    print('best accuracy:', best_acc)
    print_log('best accuracy:{}'.format(best_acc), log)
    # save model
    state = {
        'opt': opt,
        'model': model_s.state_dict(),
    }
    save_file = os.path.join(opt.save_folder, '{}_last.pth'.format(opt.model_s))
    torch.save(state, save_file)
    log.close()
示例#3
0
def main():
    best_acc = 0

    opt = parse_option()

    torch.manual_seed(2021)
    torch.cuda.manual_seed(2021)
    torch.backends.cudnn.deterministic = True

    # dataloader
    if opt.distill in ['crd']:
        train_loader, val_loader, n_data = get_cifar100_dataloaders_sample(
            opt.data_path,
            batch_size=opt.batch_size,
            num_workers=opt.num_workers,
            k=opt.nce_k,
            mode=opt.mode,
            use_fake_data=opt.use_fake_data,
            fake_data_folder=opt.fake_data_path,
            nfake=opt.nfake)
    else:
        train_loader, val_loader, n_data = get_cifar100_dataloaders(
            opt.data_path,
            batch_size=opt.batch_size,
            num_workers=opt.num_workers,
            is_instance=True,
            use_fake_data=opt.use_fake_data,
            fake_data_folder=opt.fake_data_path,
            nfake=opt.nfake)
    n_cls = 100

    # model
    model_t = load_teacher(opt.path_t, n_cls)
    model_s = model_dict[opt.model_s](num_classes=n_cls)

    ## student model name, how to initialize student model, etc.
    student_model_filename = 'S_{}_T_{}_{}_r_{}_a_{}_b_{}_epoch_{}'.format(
        opt.model_s, opt.model_t, opt.distill, opt.gamma, opt.alpha, opt.beta,
        opt.epochs)
    if opt.finetune:
        ckpt_cnn_filename = os.path.join(
            opt.save_folder,
            student_model_filename + '_finetune_True_last.pth')
        ## load pre-trained model
        checkpoint = torch.load(opt.init_student_path)
        model_s.load_state_dict(checkpoint['model'])
    else:
        ckpt_cnn_filename = os.path.join(opt.save_folder,
                                         student_model_filename + '_last.pth')
    print('\n ' + ckpt_cnn_filename)

    data = torch.randn(2, 3, 32, 32)
    model_t.eval()
    model_s.eval()
    feat_t, _ = model_t(data, is_feat=True)
    feat_s, _ = model_s(data, is_feat=True)

    module_list = nn.ModuleList([])
    module_list.append(model_s)
    trainable_list = nn.ModuleList([])
    trainable_list.append(model_s)

    criterion_cls = nn.CrossEntropyLoss()
    criterion_div = DistillKL(opt.kd_T)
    if opt.distill == 'kd':
        criterion_kd = DistillKL(opt.kd_T)
    elif opt.distill == 'hint':
        criterion_kd = HintLoss()
        regress_s = ConvReg(feat_s[opt.hint_layer].shape,
                            feat_t[opt.hint_layer].shape)
        module_list.append(regress_s)
        trainable_list.append(regress_s)
    elif opt.distill == 'crd':
        opt.s_dim = feat_s[-1].shape[1]
        opt.t_dim = feat_t[-1].shape[1]
        opt.n_data = n_data
        criterion_kd = CRDLoss(opt)
        module_list.append(criterion_kd.embed_s)
        module_list.append(criterion_kd.embed_t)
        trainable_list.append(criterion_kd.embed_s)
        trainable_list.append(criterion_kd.embed_t)
    elif opt.distill == 'attention':
        criterion_kd = Attention()
    elif opt.distill == 'nst':
        criterion_kd = NSTLoss()
    elif opt.distill == 'similarity':
        criterion_kd = Similarity()
    elif opt.distill == 'rkd':
        criterion_kd = RKDLoss()
    elif opt.distill == 'pkt':
        criterion_kd = PKT()
    elif opt.distill == 'kdsvd':
        criterion_kd = KDSVD()
    elif opt.distill == 'correlation':
        criterion_kd = Correlation()
        embed_s = LinearEmbed(feat_s[-1].shape[1], opt.feat_dim)
        embed_t = LinearEmbed(feat_t[-1].shape[1], opt.feat_dim)
        module_list.append(embed_s)
        module_list.append(embed_t)
        trainable_list.append(embed_s)
        trainable_list.append(embed_t)
    elif opt.distill == 'vid':
        s_n = [f.shape[1] for f in feat_s[1:-1]]
        t_n = [f.shape[1] for f in feat_t[1:-1]]
        criterion_kd = nn.ModuleList(
            [VIDLoss(s, t, t) for s, t in zip(s_n, t_n)])
        # add this as some parameters in VIDLoss need to be updated
        trainable_list.append(criterion_kd)
    elif opt.distill == 'abound':
        s_shapes = [f.shape for f in feat_s[1:-1]]
        t_shapes = [f.shape for f in feat_t[1:-1]]
        connector = Connector(s_shapes, t_shapes)
        # init stage training
        init_trainable_list = nn.ModuleList([])
        init_trainable_list.append(connector)
        init_trainable_list.append(model_s.get_feat_modules())
        criterion_kd = ABLoss(len(feat_s[1:-1]))
        init(model_s, model_t, init_trainable_list, criterion_kd, train_loader,
             opt)
        # classification
        module_list.append(connector)
    elif opt.distill == 'factor':
        s_shape = feat_s[-2].shape
        t_shape = feat_t[-2].shape
        paraphraser = Paraphraser(t_shape)
        translator = Translator(s_shape, t_shape)
        # init stage training
        init_trainable_list = nn.ModuleList([])
        init_trainable_list.append(paraphraser)
        criterion_init = nn.MSELoss()
        init(model_s, model_t, init_trainable_list, criterion_init,
             train_loader, opt)
        # classification
        criterion_kd = FactorTransfer()
        module_list.append(translator)
        module_list.append(paraphraser)
        trainable_list.append(translator)
    elif opt.distill == 'fsp':
        s_shapes = [s.shape for s in feat_s[:-1]]
        t_shapes = [t.shape for t in feat_t[:-1]]
        criterion_kd = FSP(s_shapes, t_shapes)
        # init stage training
        init_trainable_list = nn.ModuleList([])
        init_trainable_list.append(model_s.get_feat_modules())
        init(model_s, model_t, init_trainable_list, criterion_kd, train_loader,
             opt)
        # classification training
        pass
    else:
        raise NotImplementedError(opt.distill)

    criterion_list = nn.ModuleList([])
    criterion_list.append(criterion_cls)  # classification loss
    criterion_list.append(
        criterion_div)  # KL divergence loss, original knowledge distillation
    criterion_list.append(criterion_kd)  # other knowledge distillation loss

    # optimizer
    optimizer = optim.SGD(trainable_list.parameters(),
                          lr=opt.learning_rate,
                          momentum=opt.momentum,
                          weight_decay=opt.weight_decay)

    # append teacher after optimizer to avoid weight_decay
    module_list.append(model_t)

    if torch.cuda.is_available():
        module_list.cuda()
        criterion_list.cuda()
        cudnn.benchmark = True

    # validate teacher accuracy
    teacher_acc, _, _ = validate(val_loader, model_t, criterion_cls, opt)
    print('teacher accuracy: ', teacher_acc)

    if not os.path.isfile(ckpt_cnn_filename):

        print("\n Start training the {} >>>".format(opt.model_s))

        ## resume training
        if opt.resume_epoch > 0:
            save_file = opt.save_intrain_folder + "/ckpt_{}_epoch_{}.pth".format(
                opt.model_s, opt.resume_epoch)
            checkpoint = torch.load(save_file)
            model_s.load_state_dict(checkpoint['model'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            module_list.load_state_dict(checkpoint['module_list'])
            trainable_list.load_state_dict(checkpoint['trainable_list'])
            criterion_list.load_state_dict(checkpoint['criterion_list'])

            # module_list = checkpoint['module_list']
            # criterion_list = checkpoint['criterion_list']
            # # trainable_list = checkpoint['trainable_list']
            # ckpt_test_accuracy = checkpoint['accuracy']
            # ckpt_epoch = checkpoint['epoch']

            # print('\n Resume training: epoch {}, test_acc {}...'.format(ckpt_epoch, ckpt_test_accuracy))

            if torch.cuda.is_available():
                module_list.cuda()
                criterion_list.cuda()
        #end if

        for epoch in range(opt.resume_epoch, opt.epochs):

            adjust_learning_rate(epoch, opt, optimizer)
            print("==> training...")

            time1 = time.time()
            train_acc, train_loss = train(epoch, train_loader, module_list,
                                          criterion_list, optimizer, opt)
            time2 = time.time()
            print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))

            test_acc, tect_acc_top5, test_loss = validate(
                val_loader, model_s, criterion_cls, opt)

            # regular saving
            if (epoch + 1) % opt.save_freq == 0:
                print('==> Saving...')
                state = {
                    'epoch': epoch,
                    'model': model_s.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'module_list': module_list.state_dict(),
                    'criterion_list': criterion_list.state_dict(),
                    'trainable_list': trainable_list.state_dict(),
                    'accuracy': test_acc,
                }
                save_file = os.path.join(
                    opt.save_intrain_folder,
                    'ckpt_{}_epoch_{}.pth'.format(opt.model_s, epoch + 1))
                torch.save(state, save_file)
        ##end for epoch
        # store model
        torch.save({
            'opt': opt,
            'model': model_s.state_dict(),
        }, ckpt_cnn_filename)
        print("\n End training CNN.")

    else:
        print("\n Loading pre-trained {}.".format(opt.model_s))
        checkpoint = torch.load(ckpt_cnn_filename)
        model_s.load_state_dict(checkpoint['model'])

    test_acc, test_acc_top5, _ = validate(val_loader, model_s, criterion_cls,
                                          opt)
    print("\n {}, test_acc:{:.3f}, test_acc_top5:{:.3f}.".format(
        opt.model_s, test_acc, test_acc_top5))

    eval_results_fullpath = opt.save_folder + "/test_result_" + opt.model_name + ".txt"
    if not os.path.isfile(eval_results_fullpath):
        eval_results_logging_file = open(eval_results_fullpath, "w")
        eval_results_logging_file.close()
    with open(eval_results_fullpath, 'a') as eval_results_logging_file:
        eval_results_logging_file.write(
            "\n==================================================================================================="
        )
        eval_results_logging_file.write("\n Test results for {} \n".format(
            opt.model_name))
        print(opt, file=eval_results_logging_file)
        eval_results_logging_file.write(
            "\n Test accuracy: Top1 {:.3f}, Top5 {:.3f}.".format(
                test_acc, test_acc_top5))
        eval_results_logging_file.write(
            "\n Test error rate: Top1 {:.3f}, Top5 {:.3f}.".format(
                100 - test_acc, 100 - test_acc_top5))