示例#1
0
 def save_model(self):
     # SAVING
     print("MODEL SAVED AT LOCATION:", self.model_history_path)
     create_missing_folders(self.model_history_path)
     torch.save(
         self.state_dict(), self.model_history_path + self.flavour + "_" +
         self.model_file_name + '.state_dict')
     if self.supervised == "semi":
         torch.save(
             self.classifier.state_dict(),
             self.model_history_path + self.flavour + "_" +
             self.model_file_name + 'classifier.state_dict')
     torch.save(
         self.train_loss_history, self.model_history_path + self.flavour +
         "_" + self.model_file_name + '.train_loss')
     torch.save(
         self.train_rec_history, self.model_history_path + self.flavour +
         "_" + self.model_file_name + '.train_re')
     torch.save(
         self.train_kl_history, self.model_history_path + self.flavour +
         "_" + self.model_file_name + '.train_kl')
     torch.save(
         self.val_loss_history, self.model_history_path + self.flavour +
         "_" + self.model_file_name + '.val_loss')
     torch.save(
         self.val_rec_history, self.model_history_path + self.flavour +
         "_" + self.model_file_name + '.val_re')
     torch.save(
         self.val_kl_history, self.model_history_path + self.flavour + "_" +
         self.model_file_name + '.val_kl')
     torch.save(
         self.epoch, self.model_history_path + self.flavour + "_" +
         self.model_file_name + '.epoch')
示例#2
0
    def display_reconstruction(self, data, reconstruction):
        self.eval()
        print("GENERATING RECONSTRUCTION IMAGES autoencoder!")
        hparams_string = "/".join([
            "num_elements" + str(self.num_elements),
            "n_flows" + str(self.n_flows), "z_dim" + str(self.z_dim_last),
            "unsupervised", "lr" + str(self.lr), "ladder" + str(self.ladder),
            self.flavour
        ])
        x = data.view(-1, self.input_shape[0], self.input_shape[1],
                      self.input_shape[2]).data
        x_grid = tv.utils.make_grid(x)
        x_recon = reconstruction.view(-1, self.input_shape[0],
                                      self.input_shape[1],
                                      self.input_shape[2]).data
        x_recon_grid = tv.utils.make_grid(x_recon)
        images_path = self.hparams_string + "/recon/"
        print("Images location:", images_path)

        create_missing_folders(images_path)
        tv.utils.save_image(
            x_grid, images_path + "original_" + str(self.epoch) + ".png")
        tv.utils.save_image(
            x_recon_grid,
            images_path + "reconstruction_example_" + str(self.epoch) + ".png")
示例#3
0
def plot_losses(losses, labels, n_neurons=None, results_path="~",filename="NoName"):
    filename = "_".join([filename, "loss.png"])
    create_missing_folders(results_path + "/plots/hnet/")
    fig, ax1 = plt.subplots()
    plt.ylim([0., 1000.])

    ax1.plot(losses, 'g-.', label='train')  # plotting t, a separately

    ax1.set_xlabel('epochs')
    ax1.set_ylabel('Loss')

    # ax1.tick_params('y')
    handles, labels = ax1.get_legend_handles_labels()
    ax1.legend(handles, labels)
    if n_neurons is not None:
        ax22 = ax1.twinx()
        for i, n in enumerate(n_neurons):
            ax22.plot(n_neurons[i], '--', label="Hidden Layer " + str(i))  # plotting t, a separately
        ax22.set_ylabel('#Neurons')
        handles, labels = ax22.get_legend_handles_labels()
        ax22.legend(handles, labels)

    fig.tight_layout()
    # pylab.show()
    pylab.savefig(results_path + "/plots/hnet/" + filename)
    plt.close()
示例#4
0
 def save_model(self):
     # SAVING
     print("MODEL (with classifier) SAVED AT LOCATION:",
           self.model_history_path)
     create_missing_folders(self.model_history_path)
     torch.save(
         self.state_dict(),
         self.model_history_path + self.model_file_name + '.state_dict')
示例#5
0
    def input_pruning(self,
                      results_path,
                      min_n_input_dims=20,
                      minimum_neurons=20):
        """
        :param net:
        :param gt:
        :param min_n_input_dims:
        :param minimum_neurons:
        :return:
        """
        self.eval()
        with torch.no_grad():
            hebb_input = self.hebb_input_values.data.copy_(
                self.hebb_input_values.data).cpu().numpy()
            if len(hebb_input) >= min_n_input_dims:
                to_keep = hebb_input > float(self.gt_input)
                print("min_hebb_value:", self.gt_input)
                valid_indices = indices_h(to_keep)
                if len(valid_indices) < minimum_neurons:
                    # TODO Replace neurons that could not be removed?
                    valid_indices = indices_h(
                        torch.sort(hebb_input)[1] < minimum_neurons)
                    print("Minimum neurons on layer 1",
                          sep="\t",
                          file=self.hebb_log)

                print("previous_valid_len", self.previous_valid_len)
                self.valid_bool = [
                    1. if x in valid_indices else 0.
                    for x in range(self.input_size)
                ]
                self.alive_inputs = [
                    x for x in range(len(hebb_input)) if x in valid_indices
                ]
                alive_inputs = np.array(self.alive_inputs)
                #if len(self.alive_inputs) < self.previous_valid_len:
                masks_path = results_path + "/images/masks/" + str(
                    self.dataset_name) + "/"
                create_missing_folders(masks_path)
                img_path = "_".join([
                    "alive_inputs",
                    str(len(valid_indices)),
                    str(self.epoch), ".png"
                ])
                print("self.n_channels", self.n_channels)
                if len(self.input_shape) == 3:
                    print("SAVING MASK at", results_path)
                    mask = np.reshape(self.valid_bool,
                                      newshape=(28,
                                                28))  # TODO change hard coding
                    plt.imsave(masks_path + img_path, mask)
                self.previous_valid_len = len(valid_indices)
                self.valid_bool_tensor = self.valid_bool_tensor * torch.Tensor(
                    self.valid_bool).cuda()
                return self.valid_bool, self.alive_inputs
示例#6
0
def histograms_hidden_layers(xs,
                             results_path,
                             normalized,
                             is_mean=True,
                             epoch=0,
                             depth=0,
                             activated=False,
                             mu=None,
                             var=None,
                             axis=0,
                             bins=50,
                             flat=True,
                             neuron=None):
    ax = plt.subplot(111)
    ax.set_xlabel("Hidden value")
    ax.set_ylabel("Frequency")
    plt.title("PDF of preactivation values")

    if neuron is None:
        neurons = "all"
    else:
        neurons = "single"
        xs = xs[:, neuron]

    if is_mean:
        xs = np.mean(xs, axis=axis)
    ax.hist(xs, bins=bins, alpha=0.5, density=True)

    if mu is None and var is None:
        mean_mean = float(np.mean(xs))
        mean_var = float(np.var(xs))
    elif mu is not None and var is not None:
        mean_mean = float(mu)
        mean_var = float(var)
    else:
        print(
            "No images saved. Both mu and var must be either None or both numpy"
        )
        return
    normal_curve(ax, mean_mean, mean_var)
    if activated:
        plt.axvline(x=float(np.mean(xs)), c="g", linewidth=1)

    #    half_normal_curve(ax, mu, var, float(np.mean(xs)))
    destination_folder_path = "/".join(
        (results_path, "layers_histograms", "depth_" + str(depth),
         "activated_" + str(activated), "normalized_" + str(normalized))) + "/"
    create_missing_folders(destination_folder_path)
    destination_file_path = destination_folder_path + "Hidden_values_hist_" + str(epoch) + "_activated"+ \
                            str(activated) + "_normalized" + str(normalized) + "_mean" + str(is_mean) + "_flat"\
                            + str(flat) + "_" + neurons + "neurons.png"
    plt.savefig(destination_file_path)
    plt.close()
示例#7
0
    def plot_z_stats(self, z, path, generate="generated", max=5000):
        fig, ax = plt.subplots()  # create figure and axis
        plt.boxplot(z)
        handles, labels = ax.get_legend_handles_labels()
        ax.legend(handles, labels)
        plt.tight_layout()
        fig.tight_layout()
        path = "/".join([path, "plots/vae_z_stats", generate]) + "/"
        create_missing_folders(path)
        fig.savefig(path + self.flavour + "_" + str(self.epoch) + '_lr' +
                    str(self.lr) + '_bs' + str(self.batch_size) + ".png")
        plt.close(fig)

        del z, path, generate
示例#8
0
    def set_configs(self,
                    home_path,
                    dataset_name,
                    extra_class,
                    num_classes,
                    results_folder="results",
                    data_folder="data",
                    destination_folder="annleukemia",
                    meta_destination_folder="meta_pandas_dataframes",
                    csv_filename="csv_loggers",
                    lr=1e-3,
                    mom=0,
                    is_unlabelled=True):

        self.extra_class = extra_class
        if extra_class:
            self.num_classes = num_classes + 1
        else:
            self.num_classes = num_classes
        # Hyper-parameters
        self.lr = float(lr)
        self.mom = mom
        self.is_unlabelled = is_unlabelled

        # Files names
        if type(dataset_name) == list:
            names = [name for name in dataset_name]
            dataset_name = "_".join(names)
        self.dataset_name = dataset_name
        self.filename = dataset_name + '_history'
        self.csv_filename = csv_filename

        # Folder names
        self.results_folder = results_folder
        self.destination_folder = destination_folder
        self.data_folder = data_folder
        self.meta_destination_folder = meta_destination_folder
        # Paths
        self.home_path = home_path
        self.results_path = "/".join(
            [self.home_path, self.destination_folder, self.results_folder])
        self.models_path = "/".join([self.results_path, "models"])
        self.model_history_path = self.models_path + "/history/"

        self.csv_logger_path = "/".join([self.results_path, csv_filename])
        self.data_folder_path = "/".join(
            [home_path, self.destination_folder, self.data_folder])
        self.meta_data_folder_path = "/".join(
            [self.data_folder_path, self.meta_destination_folder])
        create_missing_folders(self.csv_logger_path)
        create_missing_folders(self.models_path)
        create_missing_folders(self.meta_data_folder_path)
        create_missing_folders(self.model_history_path)

        self.filename = self.dataset_name + '_history'
示例#9
0
 def plot_latent(self,
                 zs,
                 labs,
                 latent_type,
                 generated,
                 step,
                 max_samples=1000):
     fig, ax = plt.subplots()  # create figure and axis
     if type(labs) is not list:
         if len(labs.shape) > 1:
             labs = [x.tolist().index(1) for x in labs]
     for i, label in enumerate(self.labels_set):
         if label == "N/A":
             continue
         pos1 = np.array(
             [l for l, x in enumerate(labs) if str(x) == str(label)])
         # np.random.shuffle(pos)
         # pos2 = np.array(pos1[:max_samples], dtype=int)
         try:
             ax.scatter(zs[pos1, 0],
                        zs[pos1, 1],
                        s=3,
                        marker='.',
                        label=str(label))
         except:
             zs = np.vstack(zs)
             ax.scatter(zs[pos1, 0],
                        zs[pos1, 1],
                        s=3,
                        marker='.',
                        label=str(label))
     handles, labels = ax.get_legend_handles_labels()
     ax.legend(handles, labels)
     plt.tight_layout()
     #fig.tight_layout()
     new_string = "/".join([
         self.hparams_string, latent_type, step,
         "generated:" + str(generated)
     ])
     print("Plotting", latent_type, " at:\n", new_string, "\n")
     create_missing_folders(new_string)
     fig.savefig(new_string + "/" + str(self.epoch))
     plt.close(fig)
示例#10
0
    def generate_uniform_gaussian_percentiles(self, n=20, verbose=1, max=1000):
        self.eval()
        print("GENERATING gaussian percentiles IMAGES autoencoder!")

        xs_grid = torch.Tensor(
            np.vstack([
                np.linspace(norm.ppf(0.01), norm.ppf(0.99), n**2)
                for _ in range(self.z_dim_last)
            ]).T)

        this_path = self.hparams_string + "/gaussian_percentiles/"
        if verbose > 0:
            print("GENERATING SS DGM IMAGES AT", this_path)

        print("image path:", this_path)
        create_missing_folders(this_path)
        grid = torch.Tensor(xs_grid).to(device)
        if self.z_dim_last == 2:
            self.plot_z_stats(xs_grid,
                              generate="/ugp_generated/",
                              path=this_path,
                              max=max)

        try:
            new_x = torch.stack([self.sample(g.view(1, -1)) for g in grid])
        except:
            new_x = self.sample(grid)
        if len(self.input_shape) > 1:
            images = new_x.view(-1, self.input_shape[0], self.input_shape[1],
                                self.input_shape[2]).data

            assert n == int(images.shape[0]) / n
            images_grid = tv.utils.make_grid(images,
                                             int(np.sqrt(images.shape[0])))

            create_missing_folders(this_path)
            tv.utils.save_image(
                images_grid, this_path + str(self.epoch) + self.dataset_name +
                "gaussian_uniform_generated.png")
            del images_grid, images, new_x, xs_grid
示例#11
0
    def generate_random(self, max=1000):
        self.eval()
        print("GENERATING RANDOM IMAGES autoencoder!")
        images_path = self.hparams_string + "/generated_random/"
        create_missing_folders(images_path)

        rand_z = torch.randn(self.batch_size, self.z_dim_last).cuda()
        self.plot_z_stats(rand_z.detach().cpu().numpy(),
                          generate="/random_generated/" + self.prior_dist +
                          "/",
                          path=images_path,
                          max=max)
        new_x = self.sample(rand_z)
        if len(self.input_shape) > 1:
            images = new_x.view(-1, self.input_shape[0], self.input_shape[1],
                                self.input_shape[2]).data
            images_grid = tv.utils.make_grid(images)
            print("Images location:", images_path)
            tv.utils.save_image(
                images_grid, images_path + str(self.epoch) +
                self.dataset_name + "generated.png")
            del images_grid, images
        del rand_z, new_x, images_path
示例#12
0
def plot_performance(values,
                     labels,
                     n_list=None,
                     results_path="~",
                     filename="NoName"):
    fig2, ax21 = plt.subplots()

    ax21.plot(values["train"],
              'b-',
              label='Train:' +
              str(len(labels["train"])))  # plotting t, a separately
    ax21.plot(values["valid"],
              'g-',
              label='Valid:' +
              str(len(labels["valid"])))  # plotting t, a separately
    ax21.plot(values["valid"], 'r-', label='Test:' +
              str(len(labels["valid"])))  # plotting t, a separately
    ax21.set_xlabel('epochs')
    ax21.set_ylabel('Accuracy')
    handles, labels = ax21.get_legend_handles_labels()
    ax21.legend(handles, labels)
    ax22 = ax21.twinx()
    #colors = ["b", "g", "r", "c", "m", "y", "k"]
    if n_list is not None:
        for i, n in enumerate(n_list):
            ax22.plot(n_list[i], '--', label="Hidden Layer " +
                      str(i))  # plotting t, a separately
    ax22.set_ylabel('#Neurons')
    handles, labels = ax22.get_legend_handles_labels()
    ax22.legend(handles, labels)

    fig2.tight_layout()
    # pylab.show()
    pylab.savefig(results_path + "/plots/hnet/" + filename)
    create_missing_folders(results_path + "/plots/hnet/")
    plt.close()
示例#13
0
def plot_performance(loss_total,
                     accuracy,
                     labels,
                     results_path,
                     filename="NoName",
                     verbose=0,
                     std_loss=None,
                     std_accuracy=None):
    """

    :param loss_total:
    :param loss_labelled:
    :param loss_unlabelled:
    :param accuracy:
    :param labels:
    :param results_path:
    :param filename:
    :param verbose:
    :return:
    """
    fig2, ax21 = plt.subplots()
    n = list(range(len(accuracy["train"])))
    try:
        ax21.plot(loss_total["train"],
                  'b-',
                  label='Train total loss:' +
                  str(len(labels["train"])))  # plotting t, a separately
        ax21.plot(loss_total["valid"],
                  'g-',
                  label='Valid total loss:' +
                  str(len(labels["valid"])))  # plotting t, a separately
        #ax21.plot(values["valid"], 'r-', label='Test:' + str(len(labels["valid"])))  # plotting t, a separately
    except:
        ax21.plot(loss_total["train"], 'b-',
                  label='Train total loss:')  # plotting t, a separately
        ax21.plot(loss_total["valid"], 'g-',
                  label='Valid total loss:')  # plotting t, a separately
    if std_accuracy is not None:
        ax21.errorbar(
            x=n,
            y=loss_total["train"],
            yerr=[np.array(std_loss["train"]),
                  np.array(std_loss["train"])],
            c="b",
            label='Train')  # plotting t, a separately
    if std_accuracy is not None:
        ax21.errorbar(
            x=n,
            y=loss_total["valid"],
            yerr=[np.array(std_loss["valid"]),
                  np.array(std_loss["valid"])],
            c="g",
            label='Valid')  # plotting t, a separately

    ax21.set_xlabel('epochs')
    ax21.set_ylabel('Loss')
    handles, labels = ax21.get_legend_handles_labels()
    ax21.legend(handles, labels)
    ax22 = ax21.twinx()

    #colors = ["b", "g", "r", "c", "m", "y", "k"]
    # if n_list is not None:
    #    for i, n in enumerate(n_list):
    #        ax22.plot(n_list[i], '--', label="Hidden Layer " + str(i))  # plotting t, a separately
    ax22.set_ylabel('Accuracy')
    ax22.plot(accuracy["train"], 'c--',
              label='Train')  # plotting t, a separately
    ax22.plot(accuracy["valid"], 'k--',
              label='Valid')  # plotting t, a separately
    if std_accuracy is not None:
        ax22.errorbar(x=n,
                      y=accuracy["train"],
                      yerr=[
                          np.array(std_accuracy["train"]),
                          np.array(std_accuracy["train"])
                      ],
                      c="c",
                      label='Train')  # plotting t, a separately
    if std_accuracy is not None:
        ax22.errorbar(x=n,
                      y=accuracy["valid"],
                      yerr=[
                          np.array(std_accuracy["valid"]),
                          np.array(std_accuracy["valid"])
                      ],
                      c="k",
                      label='Valid')  # plotting t, a separately

    handles, labels = ax22.get_legend_handles_labels()
    ax22.legend(handles, labels)

    fig2.tight_layout()
    # pylab.show()
    if verbose > 0:
        print("Performance at ", results_path)
    create_missing_folders(results_path + "/plots/")
    pylab.savefig(results_path + "/plots/" + filename)
    plt.show()
    plt.close()