示例#1
0
def get_cfg( nopause=False ):
    cfg = {}

    # params
    cfg['num_epochs'] = 30
    cfg['model_path'] = None 

    # logging
    config_dir = os.path.dirname(os.path.realpath( __file__ ))
    task_name = os.path.basename( config_dir )

    # model
    cfg['model_type'] = architectures.EncoderDecoderWithCGAN
    cfg['n_g_steps_before_d'] = 1
    cfg['n_d_steps_after_g'] = 1
    cfg['init_g_steps'] = 25000
    cfg['l_norm_weight_prop'] = 0.996
    cfg['weight_decay'] = 2e-6
    cfg['instance_noise_sigma'] = 0.1
    cfg['instance_noise_anneal_fn'] = tf.train.inverse_time_decay
    cfg['instance_noise_anneal_fn_kwargs'] = {
        'decay_rate': 0.2,
        'decay_steps': 1000
    }

    cfg['encoder'] = resnet_encoder_fully_convolutional_16x16x8
    cfg['hidden_size'] = 1024
    cfg['encoder_kwargs'] = {
        'resnet_build_fn' : resnet_v1_50_16x16,
        'weight_decay': cfg['weight_decay']
    }
    cfg['decoder'] = decoder_fc_15_layer_256_resolution_fully_convolutional_16x16x4
    cfg['decoder_kwargs'] = {
        'activation_fn': leaky_relu( 0.2 ),
        'weight_decay': cfg['weight_decay']
    }
    cfg['discriminator'] = pix2pix_discriminator
    cfg['discriminator_kwargs'] = {
        'n_layers': 5,
        'stride': 4,
        'n_channel_multiplier': 64,
        'weight_decay': 10.*cfg['weight_decay']
    }
    
    # loss
    cfg['gan_loss_kwargs'] = {
        'real_label': 0.9,  # Positive labels 1 -> 0.9
        'fake_label': 0.0
    }
    
    # learning
    cfg['initial_learning_rate'] = 1e-4
    cfg[ 'optimizer' ] = tf.train.AdamOptimizer
    cfg[ 'optimizer_kwargs' ] = {}
    cfg[ 'discriminator_learning_args' ] = {
        'initial_learning_rate':1e-5,
        'optimizer': tf.train.GradientDescentOptimizer,
        'optimizer_kwargs': {}
    }
    def pwc(initial_lr, **kwargs):
        global_step = kwargs['global_step']
        del kwargs['global_step']
        return tf.train.piecewise_constant(global_step, **kwargs)
    cfg['learning_rate_schedule'] = pwc
    cfg['learning_rate_schedule_kwargs' ] = {
            'boundaries': [np.int64(0), np.int64(80000)], # need to be int64 since global step is...
            'values': [cfg['initial_learning_rate'], cfg['initial_learning_rate']/10]
    }     
    # inputs
    cfg['input_dim'] = (256, 256)  # (1024, 1024)
    cfg['input_num_channels'] = 3
    cfg['input_dtype'] = tf.float32
    cfg['input_domain_name'] = 'rgb'
    cfg['input_preprocessing_fn'] = load_ops.resize_rescale_image
    cfg['input_preprocessing_fn_kwargs'] = {
        'new_dims': cfg['input_dim'],
        'new_scale': [-1, 1]
    }

    # outputs
    cfg['target_num_channels'] = 1
    cfg['target_dim'] = (256, 256)  # (1024, 1024)
    cfg['target_dtype'] = tf.float32
    cfg['target_domain_name'] = 'keypoint'
    cfg['target_preprocessing_fn'] = load_ops.resize_rescale_image
    cfg['target_preprocessing_fn_kwargs'] = {
        'new_dims': cfg['target_dim'],
        'new_scale': [-1, 1]
    }

    # masks 

    cfg['depth_mask'] = True

    # input pipeline
    cfg['preprocess_fn'] = load_and_specify_preprocessors
    cfg['randomize'] = False 
    cfg['num_read_threads'] = 300
    cfg['batch_size'] = 32
    cfg['inputs_queue_capacity'] = 4096 

    # Checkpoints and summaries
    cfg['summary_save_every_secs'] = 300
    cfg['checkpoint_save_every_secs'] = 600 
    RuntimeDeterminedEnviromentVars.register_dict( cfg )  # These will be loaded at runtime
    print_cfg( cfg, nopause=nopause )
    return cfg
def get_cfg( nopause=False ):
    cfg = {}

    # params
    cfg['num_epochs'] = 30
    cfg['model_path'] = None 

    # logging
    config_dir = os.path.dirname(os.path.realpath( __file__ ))
    task_name = os.path.basename( config_dir )

    # model
    cfg['model_type'] = architectures.SegmentationEncoderDecoder
    cfg['weight_decay'] = 2e-6
    cfg['instance_noise_sigma'] = 0.1
    cfg['instance_noise_anneal_fn'] = tf.train.inverse_time_decay
    cfg['instance_noise_anneal_fn_kwargs'] = {
        'decay_rate': 0.2,
        'decay_steps': 1000
    }

    cfg['encoder'] = resnet_encoder_fully_convolutional_16x16x8
    cfg['hidden_size'] = 1024
    cfg['encoder_kwargs'] = {
        'resnet_build_fn' : resnet_v1_50_16x16,
        'weight_decay': cfg['weight_decay']
    }

    cfg['decoder'] = decoder_fc_15_layer_256_resolution_fully_convolutional_16x16x4
    cfg['decoder_kwargs'] = {
        'activation_fn': leaky_relu( 0.2 ),
        'weight_decay': cfg['weight_decay']
    }
    
    # learning
    cfg['initial_learning_rate'] = 1e-4
    cfg[ 'optimizer' ] = tf.train.AdamOptimizer
    cfg[ 'optimizer_kwargs' ] = {}
    def pwc(initial_lr, **kwargs):
        global_step = kwargs['global_step']
        del kwargs['global_step']
        return tf.train.piecewise_constant(global_step, **kwargs)
    cfg['learning_rate_schedule'] = pwc
    cfg['learning_rate_schedule_kwargs' ] = {
            'boundaries': [np.int64(0), np.int64(80000)], # need to be int64 since global step is...
            'values': [cfg['initial_learning_rate'], cfg['initial_learning_rate']/10]
    }     
    # inputs
    cfg['input_dim'] = (256, 256)  # (1024, 1024)
    cfg['input_num_channels'] = 3
    cfg['input_dtype'] = tf.float32
    cfg['input_domain_name'] = 'rgb'
    cfg['input_preprocessing_fn'] = load_ops.resize_rescale_image
    cfg['input_preprocessing_fn_kwargs'] = {
        'new_dims': cfg['input_dim'],
        'new_scale': [-1, 1]
    }

    # outputs
    cfg['output_dim'] = (256,256)
    cfg['num_pixels'] = 300
    cfg['only_target_discriminative'] = True
    cfg['target_num_channels'] = 64 
    cfg['target_dim'] = (cfg['num_pixels'], 3)  # (1024, 1024)
    cfg['target_dtype'] = tf.int32
    cfg['target_domain_name'] = 'segment25d'

    cfg['target_from_filenames'] = load_ops.segment_pixel_sample
    cfg['target_from_filenames_kwargs'] = {
        'new_dims': cfg['output_dim'],
        'num_pixels': cfg['num_pixels'],
        'domain': cfg['target_domain_name']
    }
    
    cfg['return_accuracy'] = False

    # input pipeline
    cfg['preprocess_fn'] = load_and_specify_preprocessors
    cfg['randomize'] = False 
    cfg['num_read_threads'] = 300 
    cfg['batch_size'] = 32
    cfg['inputs_queue_capacity'] = 4096     
    
    # Checkpoints and summaries
    cfg['summary_save_every_secs'] = 300
    cfg['checkpoint_save_every_secs'] = 600 
    RuntimeDeterminedEnviromentVars.register_dict( cfg )  # These will be loaded at runtime
    print_cfg( cfg, nopause=nopause )
    return cfg