示例#1
0
def train(model,
          train_loader,
          dev_loader,
          optimizer,
          max_epoch,
          model_dir,
          encoder,
          gpu_mode,
          eval_frequency=500):
    model.train()
    train_loss = 0
    total_steps = 0
    print_freq = 50
    dev_loss_list = []

    top1 = imsitu_scorer(encoder, 1, 3)
    top5 = imsitu_scorer(encoder, 5, 3)
    '''print('init param data check :')
    for f in model.parameters():
        print('init data and size')
        print(f.data)
        print(f.data.size())'''

    for epoch in range(max_epoch):
        #print('current sample : ', i, img.size(), verb.size(), roles.size(), labels.size())
        #sizes batch_size*3*height*width, batch*504*1, batch*6*190*1, batch*3*6*lebale_count*1
        for i, (img, verb, roles, labels) in enumerate(train_loader):
            total_steps += 1

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                roles = torch.autograd.Variable(roles.cuda())
                verb = torch.autograd.Variable(verb.cuda())
                labels = torch.autograd.Variable(labels.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb = torch.autograd.Variable(verb)
                roles = torch.autograd.Variable(roles)
                labels = torch.autograd.Variable(labels)

            verb_predict, role_predict = model(img, verb, roles)

            loss = model.calculate_loss(verb_predict, verb, role_predict,
                                        labels)
            #print('current batch loss = ', loss)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            '''print('grad check :')
            for f in model.parameters():
                print('data is')
                print(f.data)
                print('grad is')
                print(f.grad)'''

            train_loss += loss.data

            target = torch.max(verb, 1)[1]

            #get correct roles for each gt verb from roles pred
            target_role_encoding = encoder.get_role_encoding(target)

            role_pred_for_target = torch.bmm(target_role_encoding,
                                             role_predict)

            top1.add_point(verb_predict, verb, role_pred_for_target, labels)
            top5.add_point(verb_predict, verb, role_pred_for_target, labels)

            if total_steps % print_freq == 0:
                top1_a = top1.get_average_results()
                top5_a = top5.get_average_results()
                print("{},{},{}, {} , {}, loss = {:.2f}, avg loss = {:.2f}".
                      format(total_steps - 1, epoch, i,
                             utils.format_dict(top1_a, "{:.2f}", "1-"),
                             utils.format_dict(top5_a, "{:.2f}", "5-"),
                             loss.data[0], train_loss /
                             ((total_steps - 1) % eval_frequency)))

            if total_steps % eval_frequency == 0:
                top1, top5, dev_loss = eval(model, dev_loader, encoder,
                                            gpu_mode)
                model.train()

                top1_avg = top1.get_average_results()
                top5_avg = top5.get_average_results()

                avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                            top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
                avg_score /= 8

                print('Dev {} average :{:.2f} {} {}'.format(
                    total_steps - 1, avg_score * 100,
                    utils.format_dict(top1_avg, '{:.2f}', '1-'),
                    utils.format_dict(top5_avg, '{:.2f}', '5-')))

                dev_loss_list.append(dev_loss)
                min_loss = min(dev_loss_list)

                if min_loss == dev_loss_list[-1]:
                    checkpoint_name = os.path.join(
                        model_dir,
                        '{}_devloss_{}.h5'.format('baseline',
                                                  len(dev_loss_list)))
                    utils.save_net(checkpoint_name, model)
                    print('New best model saved! {0}'.format(min_loss))

                print('current train loss', train_loss)
                train_loss = 0

        print('Epoch ', epoch, ' completed!')
def train(model,
          train_loader,
          dev_loader,
          optimizer,
          scheduler,
          max_epoch,
          model_dir,
          encoder,
          gpu_mode,
          eval_frequency=500):
    model.train()
    train_loss = 0
    total_steps = 0
    print_freq = 50
    dev_score_list = []

    top1 = imsitu_scorer(encoder, 1, 3)
    top5 = imsitu_scorer(encoder, 5, 3)
    '''print('init param data check :')
    for f in model.parameters():
        if f.requires_grad:
            print(f.data.size())'''

    for epoch in range(max_epoch):
        #print('current sample : ', i, img.size(), verb.size(), roles.size(), labels.size())
        #sizes batch_size*3*height*width, batch*504*1, batch*6*190*1, batch*3*6*lebale_count*1
        mx = len(train_loader)
        for i, (img, verb, roles, labels) in enumerate(train_loader):
            #print("epoch{}-{}/{} batches\r".format(epoch,i+1,mx)) ,
            total_steps += 1

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                roles = torch.autograd.Variable(roles.cuda())
                verb = torch.autograd.Variable(verb.cuda())
                labels = torch.autograd.Variable(labels.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb = torch.autograd.Variable(verb)
                roles = torch.autograd.Variable(roles)
                labels = torch.autograd.Variable(labels)

            optimizer.zero_grad()

            verb_predict, role_predict, norm, verb_marginal, best_role_ids = model(
                img, verb, roles)

            loss = model.calculate_loss(verb_predict, verb, norm, role_predict,
                                        labels)

            loss.backward()
            optimizer.step()
            '''print('grad check :')
            for f in model.parameters():
                print('data is')
                print(f.data)
                print('grad is')
                print(f.grad)'''

            train_loss += loss.item()

            top1.add_point(verb_marginal, verb, best_role_ids, labels, roles)
            top5.add_point(verb_marginal, verb, best_role_ids, labels, roles)

            if total_steps % print_freq == 0:
                top1_a = top1.get_average_results()
                top5_a = top5.get_average_results()
                print("{},{},{}, {} , {}, loss = {:.2f}, avg loss = {:.2f}".
                      format(total_steps - 1, epoch, i,
                             utils.format_dict(top1_a, "{:.2f}", "1-"),
                             utils.format_dict(top5_a, "{:.2f}", "5-"),
                             loss.item(), train_loss /
                             ((total_steps - 1) % eval_frequency)))

            if total_steps % eval_frequency == 0:
                top1, top5, val_loss = eval(model, dev_loader, encoder,
                                            gpu_mode)
                model.train()

                top1_avg = top1.get_average_results()
                top5_avg = top5.get_average_results()

                avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                            top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
                avg_score /= 8

                print('Dev {} average :{:.2f} {} {}'.format(
                    total_steps - 1, avg_score * 100,
                    utils.format_dict(top1_avg, '{:.2f}', '1-'),
                    utils.format_dict(top5_avg, '{:.2f}', '5-')))
                print('Dev loss :', val_loss)

                dev_score_list.append(avg_score)
                max_score = max(dev_score_list)

                if max_score == dev_score_list[-1]:
                    checkpoint_name = os.path.join(
                        model_dir, '{}_devloss_cnngraph_{}.h5'.format(
                            'baseline', len(dev_score_list)))
                    utils.save_net(checkpoint_name, model)
                    print('New best model saved! {0}'.format(max_score))

                print('current train loss', train_loss)
                train_loss = 0
                top1 = imsitu_scorer(encoder, 1, 3)
                top5 = imsitu_scorer(encoder, 5, 3)

            del verb_predict, role_predict, loss, img, verb, roles, labels
            #break
        scheduler.step()
        print('Epoch ', epoch, ' completed!')
示例#3
0
                              optimizer,
                              total_loss,
                              freeze_core=False)
        train_accs.append(list(train_acc.values()))
        test_acc = test(epoch, testloader, total_loss)
        test_accs.append(list(test_acc.values()))
        print(F"\nLearning_rate: {scheduler.get_lr()[0]}")
        scheduler.step()
        acc_mean = sum(test_acc.values()) / len(test_acc.values())
        if acc_mean > best_acc:
            print('Saving..')
            print(F"acc_mean: {acc_mean}, best_acc: {best_acc}")
            if not os.path.isdir(args.out):
                print(F"create directory {args.out}")
                os.mkdir(args.out)
            save_net(os.path.join(args.out, name_save_file), net.state_dict(),
                     test_acc, epoch)
            best_acc = acc_mean

        print("train loss", total_loss.get_train_avgloss(epoch))
        print("validate loss", total_loss.get_valid_avgloss(epoch))
        print("train acc", train_acc)
        print("validate acc", test_acc)

        pd.DataFrame(train_accs, columns=trainloader.keys()).to_csv(
            os.path.join(args.out, 'train_accs.csv'))
        pd.DataFrame(test_accs, columns=trainloader.keys()).to_csv(
            os.path.join(args.out, 'test_accs.csv'))
        pd.DataFrame(data=total_loss.get_train_avglosses(),
                     columns=trainloader.keys()).to_csv(
                         os.path.join(args.out, 'train_losses.csv'))
        pd.DataFrame(data=total_loss.get_valid_avglosses(),