示例#1
0
                    np.savez(str(matches_path), **out_matches)

                # Keep the matching keypoints.
                valid = matches > -1
                mkpts0 = kpts0[valid]
                mkpts1 = kpts1[matches[valid]]
                mconf = conf[valid]

                # Estimate the pose and compute the pose error.
                assert len(pair) == 38, 'Pair does not have ground truth info'
                K0 = np.array(pair[4:13]).astype(float).reshape(3, 3)
                K1 = np.array(pair[13:22]).astype(float).reshape(3, 3)
                T_0to1 = np.array(pair[22:]).astype(float).reshape(4, 4)

                # Scale the intrinsics to resized image.
                K0 = scale_intrinsics(K0, scales0)
                K1 = scale_intrinsics(K1, scales1)

                # Update the intrinsics + extrinsics if EXIF rotation was found.
                if rot0 != 0 or rot1 != 0:
                    cam0_T_w = np.eye(4)
                    cam1_T_w = T_0to1
                    if rot0 != 0:
                        K0 = rotate_intrinsics(K0, image0.shape, rot0)
                        cam0_T_w = rotate_pose_inplane(cam0_T_w, rot0)
                    if rot1 != 0:
                        K1 = rotate_intrinsics(K1, image1.shape, rot1)
                        cam1_T_w = rotate_pose_inplane(cam1_T_w, rot1)
                    cam1_T_cam0 = cam1_T_w @ np.linalg.inv(cam0_T_w)
                    T_0to1 = cam1_T_cam0
    def on_train_epoch_end(self, outputs) -> None:
        for eval_data in self.hparams.eval:

            with open(f'{ROOT_PATH}/' + eval_data.pairs_list, 'r') as f:
                pairs = [l.split() for l in f.readlines()]

            if eval_data.max_length > -1:
                pairs = pairs[0:np.min([len(pairs), eval_data.max_length])]

            if eval_data.shuffle:
                random.Random(0).shuffle(pairs)

            if not all([len(p) == 38 for p in pairs]):
                raise ValueError(
                    'All pairs should have ground truth info for evaluation.'
                    'File \"{}\" needs 38 valid entries per row'.format(
                        eval_data.pairs_list))

            # Load the SuperPoint and SuperGlue models.
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
            print('Running inference on device \"{}\"'.format(device))
            config = {
                'superpoint': {
                    'nms_radius': eval_data.nms_radius,
                    'keypoint_threshold': eval_data.keypoint_threshold,
                    'max_keypoints': eval_data.max_keypoints
                },
                'superglue': self.hparams.model.superglue,
            }
            matching = Matching(config).eval().to(device)
            matching.superglue.load_state_dict(self.superglue.state_dict())

            # Create the output directories if they do not exist already.
            data_dir = Path(f'{ROOT_PATH}/' + eval_data.data_dir)
            # moving_dir = Path(f'{ROOT_PATH}/' + 'data/ScanNet/test_subset')
            print('Looking for data in directory \"{}\"'.format(data_dir))
            results_dir = Path(os.getcwd() + '/' + eval_data.results_dir)
            results_dir.mkdir(exist_ok=True, parents=True)
            print('Will write matches to directory \"{}\"'.format(results_dir))

            timer = AverageTimer(newline=True)
            for i, pair in enumerate(pairs):
                name0, name1 = pair[:2]
                stem0, stem1 = Path(name0).stem, Path(name1).stem
                matches_path = results_dir / '{}_{}_matches.npz'.format(
                    stem0, stem1)
                eval_path = results_dir / '{}_{}_evaluation.npz'.format(
                    stem0, stem1)
                viz_path = results_dir / '{}_{}_matches.{}'.format(
                    stem0, stem1, self.hparams.exp.viz_extension)
                viz_eval_path = results_dir / \
                                '{}_{}_evaluation.{}'.format(stem0, stem1, self.hparams.exp.viz_extension)

                # Handle --cache logic.
                do_match = True
                do_eval = True
                do_viz = self.hparams.exp.viz
                do_viz_eval = self.hparams.exp.viz
                # if opt.cache:
                #     if matches_path.exists():
                #         try:
                #             results = np.load(matches_path)
                #         except:
                #             raise IOError('Cannot load matches .npz file: %s' %
                #                           matches_path)
                #
                #         kpts0, kpts1 = results['keypoints0'], results['keypoints1']
                #         matches, conf = results['matches'], results['match_confidence']
                #         do_match = False
                #     if opt.eval and eval_path.exists():
                #         try:
                #             results = np.load(eval_path)
                #         except:
                #             raise IOError('Cannot load eval .npz file: %s' % eval_path)
                #         err_R, err_t = results['error_R'], results['error_t']
                #         precision = results['precision']
                #         matching_score = results['matching_score']
                #         num_correct = results['num_correct']
                #         epi_errs = results['epipolar_errors']
                #         do_eval = False
                #     if opt.viz and viz_path.exists():
                #         do_viz = False
                #     if opt.viz and opt.eval and viz_eval_path.exists():
                #         do_viz_eval = False
                #     timer.update('load_cache')

                if not (do_match or do_eval or do_viz or do_viz_eval):
                    timer.print('Finished pair {:5} of {:5}'.format(
                        i, len(pairs)))
                    continue

                # If a rotation integer is provided (e.g. from EXIF data), use it:
                if len(pair) >= 5:
                    rot0, rot1 = int(pair[2]), int(pair[3])
                else:
                    rot0, rot1 = 0, 0

                # Load the image pair.
                image0, inp0, scales0 = read_image(data_dir / name0,
                                                   eval_data.resize, rot0,
                                                   eval_data.resize_float)
                image1, inp1, scales1 = read_image(data_dir / name1,
                                                   eval_data.resize, rot1,
                                                   eval_data.resize_float)

                # Moving
                # os.makedirs(os.path.dirname(moving_dir / name0), exist_ok=True)
                # os.makedirs(os.path.dirname(moving_dir / name1), exist_ok=True)
                # shutil.copy(data_dir / name0, moving_dir / name0)
                # shutil.copy(data_dir / name1, moving_dir / name1)

                if image0 is None or image1 is None:
                    print('Problem reading image pair: {} {}'.format(
                        data_dir / name0, data_dir / name1))
                    exit(1)
                timer.update('load_image')

                if do_match:
                    # Perform the matching.
                    with torch.no_grad():
                        pred = matching({
                            'image0': inp0.cuda(),
                            'image1': inp1.cuda()
                        })
                    pred_np = {}
                    for (k, v) in pred.items():
                        if isinstance(v, list):
                            pred_np[k] = v[0].cpu().numpy()
                        elif isinstance(v, torch.Tensor):
                            pred_np[k] = v[0].cpu().numpy()
                    pred = pred_np
                    # pred = {k: v[0].cpu().numpy() for k, v in pred.items() if isinstance(v, torch.Tensor)}
                    kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
                    matches, conf = pred['matches0'], pred['matching_scores0']
                    timer.update('matcher')

                    # Write the matches to disk.
                    out_matches = {
                        'keypoints0': kpts0,
                        'keypoints1': kpts1,
                        'matches': matches,
                        'match_confidence': conf
                    }
                    np.savez(str(matches_path), **out_matches)

                # Keep the matching keypoints.
                valid = matches > -1
                mkpts0 = kpts0[valid]
                mkpts1 = kpts1[matches[valid]]
                mconf = conf[valid]

                if do_eval:
                    # Estimate the pose and compute the pose error.
                    assert len(
                        pair) == 38, 'Pair does not have ground truth info'
                    K0 = np.array(pair[4:13]).astype(float).reshape(3, 3)
                    K1 = np.array(pair[13:22]).astype(float).reshape(3, 3)
                    T_0to1 = np.array(pair[22:]).astype(float).reshape(4, 4)

                    # Scale the intrinsics to resized image.
                    K0 = scale_intrinsics(K0, scales0)
                    K1 = scale_intrinsics(K1, scales1)

                    # Update the intrinsics + extrinsics if EXIF rotation was found.
                    if rot0 != 0 or rot1 != 0:
                        cam0_T_w = np.eye(4)
                        cam1_T_w = T_0to1
                        if rot0 != 0:
                            K0 = rotate_intrinsics(K0, image0.shape, rot0)
                            cam0_T_w = rotate_pose_inplane(cam0_T_w, rot0)
                        if rot1 != 0:
                            K1 = rotate_intrinsics(K1, image1.shape, rot1)
                            cam1_T_w = rotate_pose_inplane(cam1_T_w, rot1)
                        cam1_T_cam0 = cam1_T_w @ np.linalg.inv(cam0_T_w)
                        T_0to1 = cam1_T_cam0

                    epi_errs = compute_epipolar_error(mkpts0, mkpts1, T_0to1,
                                                      K0, K1)
                    correct = epi_errs < 5e-4
                    num_correct = np.sum(correct)
                    precision = np.mean(correct) if len(correct) > 0 else 0
                    matching_score = num_correct / len(kpts0) if len(
                        kpts0) > 0 else 0

                    thresh = 1.  # In pixels relative to resized image size.
                    ret = estimate_pose(mkpts0, mkpts1, K0, K1, thresh)
                    if ret is None:
                        err_t, err_R = np.inf, np.inf
                    else:
                        R, t, inliers = ret
                        err_t, err_R = compute_pose_error(T_0to1, R, t)

                    # Write the evaluation results to disk.
                    out_eval = {
                        'error_t': err_t,
                        'error_R': err_R,
                        'precision': precision,
                        'matching_score': matching_score,
                        'num_correct': num_correct,
                        'epipolar_errors': epi_errs
                    }
                    np.savez(str(eval_path), **out_eval)
                    timer.update('eval')

                # if do_viz:
                #     # Visualize the matches.
                #     color = cm.jet(mconf)
                #     text = [
                #         'SuperGlue',
                #         'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
                #         'Matches: {}'.format(len(mkpts0)),
                #     ]
                #     if rot0 != 0 or rot1 != 0:
                #         text.append('Rotation: {}:{}'.format(rot0, rot1))
                #
                #     make_matching_plot(
                #         image0, image1, kpts0, kpts1, mkpts0, mkpts1, color,
                #         text, viz_path, stem0, stem1, opt.show_keypoints,
                #         opt.fast_viz, opt.opencv_display, 'Matches')
                #
                #     timer.update('viz_match')
                #
                # if do_viz_eval:
                #     # Visualize the evaluation results for the image pair.
                #     color = np.clip((epi_errs - 0) / (1e-3 - 0), 0, 1)
                #     color = error_colormap(1 - color)
                #     deg, delta = ' deg', 'Delta '
                #     if not opt.fast_viz:
                #         deg, delta = '°', '$\\Delta$'
                #     e_t = 'FAIL' if np.isinf(err_t) else '{:.1f}{}'.format(err_t, deg)
                #     e_R = 'FAIL' if np.isinf(err_R) else '{:.1f}{}'.format(err_R, deg)
                #     text = [
                #         'SuperGlue',
                #         '{}R: {}'.format(delta, e_R), '{}t: {}'.format(delta, e_t),
                #         'inliers: {}/{}'.format(num_correct, (matches > -1).sum()),
                #     ]
                #     if rot0 != 0 or rot1 != 0:
                #         text.append('Rotation: {}:{}'.format(rot0, rot1))
                #
                #     make_matching_plot(
                #         image0, image1, kpts0, kpts1, mkpts0,
                #         mkpts1, color, text, viz_eval_path,
                #         stem0, stem1, opt.show_keypoints,
                #         opt.fast_viz, opt.opencv_display, 'Relative Pose')
                #
                #     timer.update('viz_eval')

                timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs)))

            # Collate the results into a final table and print to terminal.
            pose_errors = []
            precisions = []
            matching_scores = []
            for pair in pairs:
                name0, name1 = pair[:2]
                stem0, stem1 = Path(name0).stem, Path(name1).stem
                eval_path = results_dir / \
                            '{}_{}_evaluation.npz'.format(stem0, stem1)
                results = np.load(eval_path)
                pose_error = np.maximum(results['error_t'], results['error_R'])
                pose_errors.append(pose_error)
                precisions.append(results['precision'])
                matching_scores.append(results['matching_score'])
            thresholds = [5, 10, 20]
            aucs = pose_auc(pose_errors, thresholds)
            aucs = [100. * yy for yy in aucs]
            prec = 100. * np.mean(precisions)
            ms = 100. * np.mean(matching_scores)
            print('Evaluation Results (mean over {} pairs):'.format(
                len(pairs)))
            print('AUC@5\t AUC@10\t AUC@20\t Prec\t MScore\t')
            print('{:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t'.format(
                aucs[0], aucs[1], aucs[2], prec, ms))

            self.log(f'{eval_data.name}/AUC_5',
                     aucs[0],
                     on_epoch=True,
                     on_step=False)
            self.log(f'{eval_data.name}/AUC_10',
                     aucs[1],
                     on_epoch=True,
                     on_step=False)
            self.log(f'{eval_data.name}/AUC_20',
                     aucs[2],
                     on_epoch=True,
                     on_step=False)
            self.log(f'{eval_data.name}/Prec',
                     prec,
                     on_epoch=True,
                     on_step=False)
            self.log(f'{eval_data.name}/MScore',
                     ms,
                     on_epoch=True,
                     on_step=False)
def get_keypoints(img1: np.ndarray, img2: np.ndarray, max_keypoints: int,
                  num_img: str, visualize: bool, resize: list,
                  match_path_exists: bool, dataset: str, mode: str):
    '''
    Retrieves pose from the keypoints of the images based on the given keypoint matching algorithm. 
    Inputs:
        - img1: left image (undistorted)
        - img2: right image (undistorted)
        - max_keypoints: maximum number of keypoints matching tool should consider
        - num_img: frame number
        - visualize: indicates whether visualizations should be done and saved
        - resize: dimensions at which images should be resized 
        - match_path_exists: indicates for SuperGlue if there are saved matches or if it should redo the matches
        - mode: keypoint matching algorithm in use
        - dataset: current dataset being evaluated
    Outputs:
        - R: recovered rotation matrix
        - T: recovered translation vector
        - mkpts1: matched keypoints in left image
        - mkpts2: matched keypoints in right image
    '''

    left, _inp, left_scale = read_image(img1, device, resize, 0, False)
    right, _inp, right_scale = read_image(img2, device, resize, 0, False)
    left = left.astype('uint8')
    right = right.astype('uint8')

    i1, K1, distCoeffs1 = read("data/intrinsics/" + dataset + "_left.yaml")
    i2, K2, distCoeffs2 = read("data/intrinsics/" + dataset + "_right.yaml")

    K1 = scale_intrinsics(K1, left_scale)
    K2 = scale_intrinsics(K2, right_scale)

    if mode == "superglue":
        input_pair = "data/pairs/kitti_pairs_" + num_img + ".txt"
        npz_name = "left_" + num_img + "_right_" + num_img
        out_dir = "data/matches/"
        mkpts1, mkpts2 = get_SuperGlue_keypoints(input_pair, out_dir, npz_name,
                                                 max_keypoints, visualize,
                                                 resize, match_path_exists)
    elif mode == "sift":
        mkpts1, mkpts2 = get_SIFT_keypoints(left, right, max_keypoints)
    elif mode == "orb":
        mkpts1, mkpts2 = get_ORB_keypoints(left, right, max_keypoints)

    R, T, F, _E = recover_pose(mkpts1, mkpts2, K1, K2)

    left_rectified, right_rectified = rectify(left, right, K1, distCoeffs1, K2,
                                              distCoeffs2, R, kitti_T_gt)

    if visualize:
        text = [mode, "Best 100 of " + str(max_keypoints) + " keypoints"]
        colors = np.array(['red'] * len(mkpts1))
        res_path = str("results/matches/" + mode + "/")
        match_dir = Path(res_path)
        match_dir.mkdir(parents=True, exist_ok=True)
        path = res_path + dataset + "_" + mode + "_matches_" + num_img + ".png"
        make_matching_plot(left,
                           right,
                           mkpts1,
                           mkpts2,
                           mkpts1,
                           mkpts2,
                           colors,
                           text,
                           path,
                           show_keypoints=False,
                           fast_viz=False,
                           opencv_display=False,
                           opencv_title='matches',
                           small_text=[])

        save_disp_path = "results/disparity/" + mode + "/"
        disp_dir = Path(save_disp_path)
        disp_dir.mkdir(parents=True, exist_ok=True)
        disp = get_disparity(left_rectified, right_rectified, maxDisparity=128)
        plt.imsave(save_disp_path + dataset + "_" + mode + "_disp_" + num_img +
                   ".png",
                   disp,
                   cmap="jet")

    return R, T, mkpts1, mkpts2