def __init__(self, in_channels, num_anchors, num_classes, num_layers, pyramid_levels=5, onnx_export=False): super(Classifier, self).__init__() self.num_anchors = num_anchors self.num_classes = num_classes self.num_layers = num_layers self.conv_list = nn.ModuleList([ SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers) ]) self.bn_list = nn.ModuleList([ nn.ModuleList([ nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers) ]) for j in range(pyramid_levels) ]) self.header = SeparableConvBlock(in_channels, num_anchors * num_classes, norm=False, activation=False) self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def set_swish(self, memory_efficient=True): """Sets swish function as memory efficient (for training) or standard (for export)""" self._swish = MemoryEfficientSwish() if memory_efficient else Swish() for block in self._blocks: block.set_swish(memory_efficient)
def __init__(self, num_channels, conv_channels, first_time=False, epsilon=1e-4, onnx_export=False, attention=True, use_p8=False): """ Args: num_channels: conv_channels: first_time: whether the input comes directly from the efficientnet, if True, downchannel it first, and downsample P5 to generate P6 then P7 epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon onnx_export: if True, use Swish instead of MemoryEfficientSwish """ super(BiFPN, self).__init__() self.epsilon = epsilon self.use_p8 = use_p8 # Conv layers self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) if use_p8: self.conv7_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv8_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) # Feature scaling layers self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p4_downsample = MaxPool2dStaticSamePadding(3, 2) self.p5_downsample = MaxPool2dStaticSamePadding(3, 2) self.p6_downsample = MaxPool2dStaticSamePadding(3, 2) self.p7_downsample = MaxPool2dStaticSamePadding(3, 2) if use_p8: self.p7_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p8_downsample = MaxPool2dStaticSamePadding(3, 2) self.swish = MemoryEfficientSwish() if not onnx_export else Swish() self.first_time = first_time if self.first_time: self.p5_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p4_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p3_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[0], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p5_to_p6 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), MaxPool2dStaticSamePadding(3, 2)) self.p6_to_p7 = nn.Sequential(MaxPool2dStaticSamePadding(3, 2)) if use_p8: self.p7_to_p8 = nn.Sequential(MaxPool2dStaticSamePadding(3, 2)) self.p4_down_channel_2 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p5_down_channel_2 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) # Weight self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p6_w1_relu = nn.ReLU() self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p5_w1_relu = nn.ReLU() self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p4_w1_relu = nn.ReLU() self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p3_w1_relu = nn.ReLU() self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p4_w2_relu = nn.ReLU() self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p5_w2_relu = nn.ReLU() self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p6_w2_relu = nn.ReLU() self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p7_w2_relu = nn.ReLU() self.attention = attention