示例#1
0
 def __init__(self,
              in_channels,
              num_anchors,
              num_classes,
              num_layers,
              pyramid_levels=5,
              onnx_export=False):
     super(Classifier, self).__init__()
     self.num_anchors = num_anchors
     self.num_classes = num_classes
     self.num_layers = num_layers
     self.conv_list = nn.ModuleList([
         SeparableConvBlock(in_channels,
                            in_channels,
                            norm=False,
                            activation=False) for i in range(num_layers)
     ])
     self.bn_list = nn.ModuleList([
         nn.ModuleList([
             nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3)
             for i in range(num_layers)
         ]) for j in range(pyramid_levels)
     ])
     self.header = SeparableConvBlock(in_channels,
                                      num_anchors * num_classes,
                                      norm=False,
                                      activation=False)
     self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
示例#2
0
 def set_swish(self, memory_efficient=True):
     """Sets swish function as memory efficient (for training) or standard (for export)"""
     self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
     for block in self._blocks:
         block.set_swish(memory_efficient)
示例#3
0
    def __init__(self,
                 num_channels,
                 conv_channels,
                 first_time=False,
                 epsilon=1e-4,
                 onnx_export=False,
                 attention=True,
                 use_p8=False):
        """

        Args:
            num_channels:
            conv_channels:
            first_time: whether the input comes directly from the efficientnet,
                        if True, downchannel it first, and downsample P5 to generate P6 then P7
            epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon
            onnx_export: if True, use Swish instead of MemoryEfficientSwish
        """
        super(BiFPN, self).__init__()
        self.epsilon = epsilon
        self.use_p8 = use_p8

        # Conv layers
        self.conv6_up = SeparableConvBlock(num_channels,
                                           onnx_export=onnx_export)
        self.conv5_up = SeparableConvBlock(num_channels,
                                           onnx_export=onnx_export)
        self.conv4_up = SeparableConvBlock(num_channels,
                                           onnx_export=onnx_export)
        self.conv3_up = SeparableConvBlock(num_channels,
                                           onnx_export=onnx_export)
        self.conv4_down = SeparableConvBlock(num_channels,
                                             onnx_export=onnx_export)
        self.conv5_down = SeparableConvBlock(num_channels,
                                             onnx_export=onnx_export)
        self.conv6_down = SeparableConvBlock(num_channels,
                                             onnx_export=onnx_export)
        self.conv7_down = SeparableConvBlock(num_channels,
                                             onnx_export=onnx_export)
        if use_p8:
            self.conv7_up = SeparableConvBlock(num_channels,
                                               onnx_export=onnx_export)
            self.conv8_down = SeparableConvBlock(num_channels,
                                                 onnx_export=onnx_export)

        # Feature scaling layers
        self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest')

        self.p4_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p5_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p6_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p7_downsample = MaxPool2dStaticSamePadding(3, 2)
        if use_p8:
            self.p7_upsample = nn.Upsample(scale_factor=2, mode='nearest')
            self.p8_downsample = MaxPool2dStaticSamePadding(3, 2)

        self.swish = MemoryEfficientSwish() if not onnx_export else Swish()

        self.first_time = first_time
        if self.first_time:
            self.p5_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p4_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p3_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[0], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

            self.p5_to_p6 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
                MaxPool2dStaticSamePadding(3, 2))
            self.p6_to_p7 = nn.Sequential(MaxPool2dStaticSamePadding(3, 2))
            if use_p8:
                self.p7_to_p8 = nn.Sequential(MaxPool2dStaticSamePadding(3, 2))

            self.p4_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p5_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

        # Weight
        self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32),
                                  requires_grad=True)
        self.p6_w1_relu = nn.ReLU()
        self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32),
                                  requires_grad=True)
        self.p5_w1_relu = nn.ReLU()
        self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32),
                                  requires_grad=True)
        self.p4_w1_relu = nn.ReLU()
        self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32),
                                  requires_grad=True)
        self.p3_w1_relu = nn.ReLU()

        self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32),
                                  requires_grad=True)
        self.p4_w2_relu = nn.ReLU()
        self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32),
                                  requires_grad=True)
        self.p5_w2_relu = nn.ReLU()
        self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32),
                                  requires_grad=True)
        self.p6_w2_relu = nn.ReLU()
        self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32),
                                  requires_grad=True)
        self.p7_w2_relu = nn.ReLU()

        self.attention = attention