示例#1
0
def load_model(weights, device):
    # Load model
    # model = attempt_load(weights, map_location=device)  # load FP32 model
    with open('data/coco128.yaml') as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)

    model = Model('models/yolov5s.yaml').to(device)
    model.names = data_dict['names']
    model = model.fuse().eval()

    ckpt = torch.load(weights, map_location=device)
    ckpt['model'].float().fuse().eval()
    print({
        k: (v.shape, model.state_dict()[k].shape)
        for k, v in ckpt['model'].float().state_dict().items()
        if model.state_dict()[k].shape != v.shape
    })

    print({
        k: (v.shape, ckpt['model'].float().state_dict()[k].shape)
        for k, v in model.state_dict().items()
        if ckpt['model'].float().state_dict()[k].shape != v.shape
    })

    ckpt['model'] = {
        k: v
        for k, v in ckpt['model'].float().state_dict().items()
        if model.state_dict()[k].shape == v.shape
    }
    model.load_state_dict(ckpt['model'], strict=False)

    for k, m in model.named_modules():
        m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatability
        if isinstance(m, Conv) and isinstance(m.act, nn.Hardswish):
            m.act = Hardswish()
        if isinstance(m, Conv) and isinstance(m.act, nn.SiLU):
            m.act = SiLU()
    return model
示例#2
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.safe_load(f)  # data dict
    is_coco = opt.data.endswith('coco.yaml')

    # Logging- Doing this before checking the dataset. Might update data_dict
    loggers = {'wandb': None}  # loggers dict
    if rank in [-1, 0]:
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith(
            '.pt') and os.path.isfile(weights) else None
        wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        data_dict = wandb_logger.data_dict
        if wandb_logger.wandb:
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # WandbLogger might update weights, epochs if resuming

    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(opt.cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
        exclude = [
            'anchor'
        ] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(
                ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights,
                                            quad=opt.quad,
                                            prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            batch_size * 2,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr('val: '))[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and rank != -1:
        model = DDP(
            model,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
            find_unused_parameters=any(
                isinstance(layer, nn.MultiheadAttention)
                for layer in model.modules()))

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'labels', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    if tb_writer:
                        tb_writer.add_graph(
                            torch.jit.trace(model, imgs, strict=False),
                            [])  # add model graph
                        # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                elif plots and ni == 10 and wandb_logger.wandb:
                    wandb_logger.log({
                        "Mosaics": [
                            wandb_logger.wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg') if x.exists()
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'gr', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                results, maps, times = test.test(data_dict,
                                                 batch_size=batch_size * 2,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 verbose=nc < 50
                                                 and final_epoch,
                                                 plots=plots and final_epoch,
                                                 wandb_logger=wandb_logger,
                                                 compute_loss=compute_loss,
                                                 is_coco=is_coco)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results +
                        '\n')  # append metrics, val_loss

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb_logger.wandb:
                    wandb_logger.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)

            # Save model
            if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
                ckpt = {
                    'epoch':
                    epoch,
                    'best_fitness':
                    best_fitness,
                    'training_results':
                    results_file.read_text(),
                    'model':
                    deepcopy(
                        model.module if is_parallel(model) else model).half(),
                    'ema':
                    deepcopy(ema.ema).half(),
                    'updates':
                    ema.updates,
                    'optimizer':
                    optimizer.state_dict(),
                    'wandb_id':
                    wandb_logger.wandb_run.id if wandb_logger.wandb else None
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if wandb_logger.wandb:
                    if ((epoch + 1) % opt.save_period == 0
                            and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(last.parent,
                                               opt,
                                               epoch,
                                               fi,
                                               best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    if rank in [-1, 0]:
        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb_logger.wandb:
                files = [
                    'results.png', 'confusion_matrix.png',
                    *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]
                ]
                wandb_logger.log({
                    "Results": [
                        wandb_logger.wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for m in (last,
                      best) if best.exists() else (last):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=batch_size * 2,
                                          imgsz=imgsz_test,
                                          conf_thres=0.001,
                                          iou_thres=0.7,
                                          model=attempt_load(m, device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=True,
                                          plots=False,
                                          is_coco=is_coco)

        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload
        if wandb_logger.wandb and not opt.evolve:  # Log the stripped model
            wandb_logger.wandb.log_artifact(
                str(final),
                type='model',
                name='run_' + wandb_logger.wandb_run.id + '_model',
                aliases=['last', 'best', 'stripped'])
        wandb_logger.finish_run()
    else:
        dist.destroy_process_group()
    torch.cuda.empty_cache()
    return results
示例#3
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(
        opt.logdir) / 'evolve'  # logging directory
    log_dir = Path("/project/train/log")
    wdir = Path("/project/train/models")  # weights directory
    os.makedirs(wdir / 'last', exist_ok=True)
    os.makedirs(wdir / 'final', exist_ok=True)
    last = wdir / 'last' / 'last.pt'
    best = wdir / 'final' / 'best.pt'
    results_file = str(log_dir / 'log.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        print(data_dict)
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        id = ckpt.get('wandb_id') if 'ckpt' in locals() else None
        wandb_run = wandb.init(config=opt,
                               resume="allow",
                               project="YOLOv5",
                               name=os.path.basename(log_dir),
                               id=id)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            shutil.copytree(wdir, wdir.parent /
                            f'weights_backup_epoch{start_epoch - 1}'
                            )  # save previous weights
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers)[0]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            plot_labels(labels, save_dir=log_dir)
            if tb_writer:
                # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
                tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' %
                (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            # if rank in [-1, 0]:
            if i % 500 == 0:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(log_dir / f'train_batch{ni}.jpg')  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    # if tb_writer and result is not None:
                    # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=log_dir,
                    plots=epoch == 0 or final_epoch,  # plot first and last
                    log_imgs=opt.log_imgs)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/log%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/giou_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/giou_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            # logger.info(results)
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }
                    ckpt = {'model': ema.ema}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ''
        fresults, flast, fbest = log_dir / f'log{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
        for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                if str(f2).endswith('.pt'):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        'gsutil cp %s gs://%s/weights' %
                        (f2, opt.bucket)) if opt.bucket else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=log_dir)  # save as results.png
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
示例#4
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        # with torch_distributed_zero_first(rank):
        #     attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if rank in [-1, 0] and wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project='YOLOv5'
            if opt.project == 'runs/train' else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(model.stride.max())  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # TODO 将cfg添加到配置变量中
    cfg_model = Darknet('cfg/yolov5s_v4.cfg',
                        (opt.img_size[0], opt.img_size[0])).to(device)
    # cfg_model = Darknet('cfg/yolov5s_v3.cfg', (416, 416)).to(device)
    copy_weight_v4(model, cfg_model)
    # 剪枝操作  sr开启稀疏训练  prune 不同的剪枝策略
    # 剪枝操作
    if opt.prune == 1:
        CBL_idx, _, prune_idx, shortcut_idx, _ = parse_module_defs2(
            cfg_model.module_defs)
        if opt.sr:
            print('shortcut sparse training')
    elif opt.prune == 0:
        CBL_idx, _, prune_idx = parse_module_defs(cfg_model.module_defs)
        if opt.sr:
            print('normal sparse training ')

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights,
                                            quad=opt.quad)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            total_batch_size,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5)[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale hyp['cls'] to class count
    hyp['obj'] *= imgsz**2 / 640.**2 * 3. / nl  # scale hyp['obj'] to image size and output layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    for idx in prune_idx:
        bn_weights = gather_bn_weights(cfg_model.module_list, [idx])
        tb_writer.add_histogram('before_train_perlayer_bn_weights/hist',
                                bn_weights.numpy(),
                                idx,
                                bins='doane')

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' %
                (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        sr_flag = get_sr_flag(epoch, opt.sr)
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            # with amp.autocast(enabled=cuda):
            #     pred = model(imgs)  # forward
            #     loss, loss_items = compute_loss(pred, targets.to(device), model)  # loss scaled by batch_size
            #     if rank != -1:
            #         loss *= opt.world_size  # gradient averaged between devices in DDP mode
            #     if opt.quad:
            #         loss *= 4.

            # Forward
            pred = model(imgs)
            # Loss
            loss, loss_items = compute_loss(pred, targets.to(device),
                                            model)  # scaled by batch_size
            if rank != -1:
                loss *= opt.world_size  # gradient averaged between devices in DDP mode
            if not torch.isfinite(loss):
                print('WARNING: non-finite loss, ending training ', loss_items)
                return results
            # Backward
            # scaler.scale(loss).backward()
            loss.backward()

            idx2mask = None
            # if opt.sr and opt.prune==1 and epoch > opt.epochs * 0.5:
            #     idx2mask = get_mask2(model, prune_idx, 0.85)
            # copy_weight(model,cfg_model)
            BNOptimizer.updateBN(sr_flag, cfg_model.module_list, opt.s,
                                 prune_idx, epoch, idx2mask, opt)

            # Optimize
            if ni % accumulate == 0:
                # scaler.step(optimizer)  # optimizer.step
                # scaler.update()
                optimizer.step()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log({
                        "Mosaics": [
                            wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg')
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(model,
                                include=[
                                    'yaml', 'nc', 'hyp', 'gr', 'names',
                                    'stride', 'class_weights'
                                ])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard

                if wandb:
                    wandb.log({tag: x})  # W&B
            #剪枝后bn层权重
            bn_weights = gather_bn_weights(cfg_model.module_list, prune_idx)
            tb_writer.add_histogram('bn_weights/hist',
                                    bn_weights.numpy(),
                                    epoch,
                                    bins='doane')

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    for idx in prune_idx:
        bn_weights = gather_bn_weights(cfg_model.module_list, [idx])
        tb_writer.add_histogram('after_train_perlayer_bn_weights/hist',
                                bn_weights.numpy(),
                                idx,
                                bins='doane')

    if rank in [-1, 0]:
        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in [last, best]:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload

        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    'results.png', 'precision_recall_curve.png',
                    'confusion_matrix.png'
                ]
                wandb.log({
                    "Results": [
                        wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
                if opt.log_artifacts:
                    wandb.log_artifact(artifact_or_path=str(final),
                                       type='model',
                                       name=save_dir.stem)

        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for conf, iou, save_json in ([0.25, 0.45,
                                          False], [0.001, 0.65,
                                                   True]):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=total_batch_size,
                                          imgsz=imgsz_test,
                                          conf_thres=conf,
                                          iou_thres=iou,
                                          model=attempt_load(final,
                                                             device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=save_json,
                                          plots=False)

    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
示例#5
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings,超参数,训练para
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(
            rank):  # torch_distributed_zero_first同步所有进程
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    # 所以这里主要是设定一个,如果加载预训练权重进行训练的话,就去除掉权重中的anchor,采用用户自定义的;
    # 如果是resume的话,就是不去除anchor,就权重和anchor一起加载, 接着训练;
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create resume时将opt.cfg设为空
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys 如果resume,则加载权重中保存的anchor来继续训练;
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info('Transferred %g/%g items from %s' %
                    (len(state_dict), len(model.state_dict()), weights))
        # 显示加载预训练权重的的键值对和创建模型的键值对
        # 如果设置了resume,则会少加载两个键值对(anchors,anchor_grid)
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    #将模型分成三组(weight、bn, bias, 其他所有参数)优化
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project='YOLOv5'
            if opt.project == 'runs/train' else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode DataParallel模式,仅支持单机多卡
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average 为模型创建EMA指数滑动平均,如果GPU进程数大于1,则不创建
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    # 如果rank不等于-1,则使用DistributedDataParallel模式
    # local_rank为gpu编号,rank为进程,例如rank=3,local_rank=0 表示第 3 个进程内的第 1 块 GPU。
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)
    """
    获取标签中最大的类别值,并于类别数作比较
    如果小于类别数则表示有问题
    """
    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers,
                                       pad=0.5)[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            # 根据上面的统计对所有样本的类别,中心点xy位置,长宽wh做可视化
            if plots:
                Thread(target=plot_labels,
                       args=(labels, save_dir, loggers),
                       daemon=True).start()
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)  # 通过torch1.6自带的api设置混合精度训练
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' %
                (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)  # 广播索引到其他group
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
            # DDP模式下打乱数据, ddp.sampler的随机采样数据是基于epoch+seed作为随机种子,
            # 每次epoch不同,随机种子就不同
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    """
                    bias的学习率从0.1下降到基准学习率lr*lf(epoch),
                    其他的参数学习率从0增加到lr*lf(epoch).
                    lf为上面设置的余弦退火的衰减函数
                    """
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # 模型反向传播accumulate次之后再根据累积的梯度更新一次参数
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log({
                        "Mosaics": [
                            wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg')
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    # 模型训练完后,strip_optimizer函数将optimizer从ckpt中去除;
    # 并且对模型进行model.half(), 将Float32的模型->Float16,
    if rank in [-1, 0]:
        # Strip optimizers
        for f in [last, best]:
            if f.exists():  # is *.pt
                strip_optimizer(f)  # strip optimizer
                os.system('gsutil cp %s gs://%s/weights' %
                          (f, opt.bucket)) if opt.bucket else None  # upload

        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    'results.png', 'precision_recall_curve.png',
                    'confusion_matrix.png'
                ]
                wandb.log({
                    "Results": [
                        wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

        # Test best.pt
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            results, _, _ = test.test(
                opt.data,
                batch_size=total_batch_size,
                imgsz=imgsz_test,
                model=attempt_load(best if best.exists() else last,
                                   device).half(),
                single_cls=opt.single_cls,
                dataloader=testloader,
                save_dir=save_dir,
                save_json=True,  # use pycocotools
                plots=False)

    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
示例#6
0
def train(hyp, opt, tb_writer=None):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, weights = Path(
        opt.save_dir), opt.epochs, opt.batch_size, opt.weights

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pkl'
    best = wdir / 'best.pkl'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = not opt.no_cuda
    if cuda:
        jt.flags.use_cuda = 1

    init_seeds(1)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict

    check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    model = Model(opt.cfg, ch=3, nc=nc)  # create
    pretrained = weights.endswith('.pkl')
    if pretrained:
        model.load(weights)  # load

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, jt.Var):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, jt.Var):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = optim.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    loggers = {}  # loggers dict

    start_epoch, best_fitness = 0, 0.0

    # Image sizes
    gs = int(model.stride.max())  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # EMA
    ema = ModelEMA(model)

    # Trainloader
    dataloader = create_dataloader(train_path,
                                   imgsz,
                                   batch_size,
                                   gs,
                                   opt,
                                   hyp=hyp,
                                   augment=True,
                                   cache=opt.cache_images,
                                   rect=opt.rect,
                                   workers=opt.workers,
                                   image_weights=opt.image_weights,
                                   quad=opt.quad,
                                   prefix=colorstr('train: '))

    mlc = np.concatenate(dataloader.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    ema.updates = start_epoch * nb // accumulate  # set EMA updates
    testloader = create_dataloader(
        test_path,
        imgsz_test,
        batch_size,
        gs,
        opt,  # testloader
        hyp=hyp,
        cache=opt.cache_images and not opt.notest,
        rect=True,
        workers=opt.workers,
        pad=0.5,
        prefix=colorstr('val: '))

    labels = np.concatenate(dataloader.labels, 0)
    c = jt.array(labels[:, 0])  # classes

    # cf = torch.bincount(c.int(), minlength=nc) + 1.  # frequency
    # model._initialize_biases(cf)
    if plots:
        plot_labels(labels, save_dir, loggers)
        if tb_writer:
            tb_writer.add_histogram('classes', c.numpy(), 0)

    # Anchors
    if not opt.noautoanchor:
        check_anchors(dataloader,
                      model=model,
                      thr=hyp['anchor_t'],
                      imgsz=imgsz)

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataloader.labels, nc) * nc  # attach class weights
    model.names = names
    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            cw = model.class_weights.numpy() * (1 -
                                                maps)**2 / nc  # class weights
            iw = labels_to_image_weights(dataloader.labels,
                                         nc=nc,
                                         class_weights=cw)  # image weights
            dataloader.indices = random.choices(
                range(dataloader.n), weights=iw,
                k=dataloader.n)  # rand weighted idx

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = jt.zeros((4, ))  # mean losses
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 7) %
            ('Epoch', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
        pbar = tqdm(pbar, total=nb)  # progress bar
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                # accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())

                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = nn.interpolate(imgs,
                                          size=ns,
                                          mode='bilinear',
                                          align_corners=False)
            # Forward
            pred = model(imgs)  # forward
            loss, loss_items = compute_loss(pred, targets,
                                            model)  # loss scaled by batch_size
            if opt.quad:
                loss *= 4.

            # Optimize
            optimizer.step(loss)
            if ema:
                ema.update(model)

            # Print
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            s = ('%10s' + '%10.4g' * 6) % ('%g/%g' %
                                           (epoch, epochs - 1), *mloss,
                                           targets.shape[0], imgs.shape[-1])
            pbar.set_description(s)

            # Plot
            if plots and ni < 3:
                f = save_dir / f'train_batch{ni}.jpg'  # filename
                Thread(target=plot_images,
                       args=(imgs, targets, paths, f),
                       daemon=True).start()
                # if tb_writer:
                #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                #     tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # mAP
        if ema:
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'gr', 'names', 'stride',
                                'class_weights'
                            ])
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            results, maps, times = test.test(data=opt.data,
                                             batch_size=batch_size,
                                             imgsz=imgsz_test,
                                             model=ema.ema,
                                             single_cls=opt.single_cls,
                                             dataloader=testloader,
                                             save_dir=save_dir,
                                             plots=plots and final_epoch)

        # Write
        with open(results_file, 'a') as f:
            f.write(s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
        if len(opt.name) and opt.bucket:
            os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                      (results_file, opt.bucket, opt.name))

        # Log
        tags = [
            'train/box_loss',
            'train/obj_loss',
            'train/cls_loss',  # train loss
            'metrics/precision',
            'metrics/recall',
            'metrics/mAP_0.5',
            'metrics/mAP_0.5-0.95',
            'val/box_loss',
            'val/obj_loss',
            'val/cls_loss',  # val loss
            'x/lr0',
            'x/lr1',
            'x/lr2'
        ]  # params
        for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
            if tb_writer:
                if hasattr(x, "numpy"):
                    x = x.numpy()
                tb_writer.add_scalar(tag, x, epoch)  # tensorboard

        # Update best mAP
        fi = fitness(np.array(results).reshape(
            1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
        if fi > best_fitness:
            best_fitness = fi

        # Save model
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            # Save last, best and delete
            jt.save(ema.ema.state_dict(), last)
            if best_fitness == fi:
                jt.save(ema.ema.state_dict(), best)
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    # Strip optimizers
    final = best if best.exists() else last  # final model
    if opt.bucket:
        os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload

    # Plots
    if plots:
        plot_results(save_dir=save_dir)  # save as results.png

    # Test best.pkl
    logger.info('%g epochs completed in %.3f hours.\n' %
                (epoch - start_epoch + 1, (time.time() - t0) / 3600))
    best_model = Model(opt.cfg)
    best_model.load(str(final))
    best_model = best_model.fuse()
    if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
        for conf, iou, save_json in ([0.25, 0.45,
                                      False], [0.001, 0.65,
                                               True]):  # speed, mAP tests
            results, _, _ = test.test(opt.data,
                                      batch_size=total_batch_size,
                                      imgsz=imgsz_test,
                                      conf_thres=conf,
                                      iou_thres=iou,
                                      model=best_model,
                                      single_cls=opt.single_cls,
                                      dataloader=testloader,
                                      save_dir=save_dir,
                                      save_json=save_json,
                                      plots=False)

    return results
示例#7
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.safe_load(f)  # data dict

    # Logging- Doing this before checking the dataset. Might update data_dict
    loggers = {'wandb': None}  # loggers dict
    if rank in [-1, 0]:
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith(
            '.pt') and os.path.isfile(weights) else None
        wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        data_dict = wandb_logger.data_dict
        if wandb_logger.wandb:
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # WandbLogger might update weights, epochs if resuming

    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    ## hyps : command line hyperparameters (overwrites hyp.yaml)
    hyps = None
    try:
        if opt.hyps is not None and len(opt.hyps) > 0:
            ## hyps should evaluate to a python dict()
            hyps = ast.literal_eval(opt.hyps)
            ## add hyps to hyp (overwrite)...
            for k, v in hyps.items():
                hyp[k] = v
    except:
        pfunc(f'ERROR: problem parsing hyps (hyperparameter string): {hyps}')

    # Print swagger job json string...
    if opt.job_str:
        pfunc(f'swagger job submitted:\n{opt.job_str}\n')

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(opt.cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
        exclude = [
            'anchor'
        ] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    if hyp.get('freeze'):  ## freeze backbone layers?
        N = int(hyp['freeze']) + 1
        freeze = ['model.%s.' % x for x in range(N)]
        logger.info('Freezing first {} layers of network'.format(N))
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            logger.info('freezing %s' % k)
            v.requires_grad = False

    # ## create separate testing model
    # test_model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    # for k, v in test_model.named_parameters():
    #     v.requires_grad = False  # freeze all layers

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR

    lr_epochs, init_epochs = epochs, 0
    if hyp.get('init_epochs'):
        init_epochs = hyp['init_epochs']
        lr_epochs += init_epochs
    if opt.linear_lr:
        lf = lambda x: (1 - x / (lr_epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], lr_epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(
                ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Fix Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Fix Crop size
    if hyp.get('crop') and hyp['crop'] > 0:
        hyp['crop'] = check_img_size(hyp['crop'], gs)
        imgsz_test = hyp['crop']

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        pfunc('DOING DATA PARALLEL MODE!!!!!!!!!!!')
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # if rank in [-1, 0]:
    pfunc(
        f'RANK={rank} opt.world_size={opt.world_size} dist.get_rank()={dist.get_rank()} dist.get_world_size()={dist.get_world_size()}'
    )

    # Trainloader
    trainloader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size,
        gs,
        opt,
        hyp=hyp,
        augment=True,
        cache=opt.cache_images,  # cache='disk',
        cache_efficient_sampling=True,
        rect=opt.rect,
        rank=rank,
        world_size=opt.world_size,
        workers=opt.workers,
        image_weights=opt.image_weights,
        quad=opt.quad,
        prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(trainloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Testloader
    # test_batch_size = batch_size
    test_batch_size = 1  ## so test_batch_size-per-GPU = 1 (needed for DDP validation)
    testloader = create_dataloader(test_path,
                                   imgsz_test,
                                   test_batch_size,
                                   gs,
                                   opt,
                                   hyp=hyp,
                                   cache=opt.cache_images and not opt.notest,
                                   cache_efficient_sampling=True,
                                   drop_last=False,
                                   shuffle=False,
                                   rect=True,
                                   training=False,
                                   rank=rank,
                                   world_size=opt.world_size,
                                   workers=opt.workers,
                                   pad=0.5,
                                   prefix=colorstr('val: '))[0]
    # Process 0
    new_best_model = False
    if rank in [-1, 0]:
        # orig_testloader = create_dataloader(test_path, imgsz_test, test_batch_size, gs, opt,
        #                                     hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
        #                                     world_size=opt.world_size, workers=opt.workers,
        #                                     # lazy_caching=True,
        #                                     pad=0.5, prefix=colorstr('val: '))[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            if plots:
                plot_labels(labels, names, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and rank != -1:
        model = DDP(
            model,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
            find_unused_parameters=any(
                isinstance(layer, nn.MultiheadAttention)
                for layer in model.modules()))

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = t1 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class

    ###### resuming training run..... #########################################
    if init_epochs > 0:
        nw = -1
        logger.info(
            'Stepping lr_scheduler forward {} epochs...'.format(init_epochs))
    for i in range(init_epochs - 1):
        scheduler.step()
    ## check initial model performance....
    # if init_epochs>0 and rank in [-1, 0]:
    #     test.test(opt.data,
    #             batch_size=test_batch_size,
    #             imgsz=imgsz_test,
    #             model=ema.ema,
    #             single_cls=opt.single_cls,
    #             dataloader=orig_testloader,
    #             save_dir=save_dir,
    #             verbose=True,
    #             plots=False,
    #             log_imgs=opt.log_imgs if wandb else 0,
    #             compute_loss=compute_loss)
    ###########################################################################

    pfunc(f'Image sizes {imgsz} train, {imgsz_test} test\n'
          f'Using {trainloader.num_workers} trainloader workers\n'
          f'Logging results to {save_dir}\n'
          f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            trainloader.sampler.set_epoch(epoch)
        pbar = enumerate(trainloader)

        if rank in [-1, 0]:
            t1 = time.time()
            num_img = 0
            steps = list(range(100, 0, -2))
            pfunc(
                '=========================================================================================================='
            )
            pfunc(f'Epoch {epoch+1}/{epochs}')

        optimizer.zero_grad()

        # logging.StreamHandler.terminator = ""
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            ## simple progress indicator....
            if rank in [-1, 0]:
                prog = int(np.ceil(100 * (i + 1) / nb))
                while len(steps) > 0 and prog >= steps[-1]:
                    step = steps.pop()
                    # pfunc('.')
                    if step % 10 == 0:
                        pfunc(f'      {step}%')
                        # gpu_stats()

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                td = time.time() - t1
                num_img += imgs.shape[0]
                imgs_sec = (num_img / td) * opt.world_size
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)

                # Plot
                if plots and ni < 5:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs, strict=False), [])  # model graph
                    #     # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                elif plots and ni == 10 and wandb_logger.wandb:
                    wandb_logger.log({
                        "Mosaics": [
                            wandb_logger.wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg') if x.exists()
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # logging.StreamHandler.terminator = "\n"
        if rank in [-1, 0]:
            pfunc(
                ('     ' + '%10s' * 3) % ('total_min', 'gpu_mem', 'imgs_sec'))
            pfunc(('     ' + '%10.2f' + '%10s' + '%10.4g') %
                  (((time.time() - t1) / 60), mem, imgs_sec))
            t1 = time.time()
            final_epoch = epoch + 1 == epochs

        ##################################################################################
        ## DDP VALIDATION....
        # results = (mp, mr, mf1, map50, map)#, *(loss.cpu() / len(dataloader)).tolist())
        try:
            results = test_ddp(
                opt,
                de_parallel(model),
                testloader,
                rank,
                device,
                names,
            )

            if rank in [-1, 0]:
                pfunc(f'Validation Time: {(time.time()-t1)/60:0.2f} min')

                # Logging
                tags = [
                    'train/box_loss',
                    'train/obj_loss',
                    'train/cls_loss',  # train loss
                    'metrics/precision',
                    'metrics/recall',
                    'metrics/F1',
                    'metrics/mAP_0.5',
                    'metrics/mAP_0.5:0.95',
                    # 'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                    'x/lr0',
                    'x/lr1',
                    'x/lr2'
                ]  # params
                for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                    if tb_writer:
                        tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                    if wandb_logger.wandb:
                        wandb_logger.log({tag: x})  # W&B

                # Update best fitness
                # fitness = weighted combination of [P, R, F1, [email protected], [email protected]:0.95]
                fi = fitness(np.array(results).reshape(1, -1))
                if fi > best_fitness:
                    best_fitness = fi
                wandb_logger.end_epoch(best_result=best_fitness == fi)

                # Save model
                if (not opt.nosave) or (final_epoch
                                        and not opt.evolve):  # if save
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        # 'training_results': results_file.read_text(),
                        'model':
                        deepcopy(de_parallel(model)).half(),
                        'ema':
                        deepcopy(ema.ema).half(),
                        'updates':
                        ema.updates,
                        'optimizer':
                        optimizer.state_dict(),
                        'wandb_id':
                        wandb_logger.wandb_run.id
                        if wandb_logger.wandb else None
                    }

                    # Save last, best and delete
                    torch.save(ckpt, last)
                    if best_fitness == fi:
                        pfunc('Saving best model!')
                        torch.save(ckpt, best)
                        new_best_model = True
                        best_model_msg = f'Best Model: Epoch {epoch+1}, mF1={results[2]:0.3f}, [email protected]:0.95={results[4]:0.3f}'

                    if wandb_logger.wandb:
                        if ((epoch + 1) % opt.save_period == 0
                                and not final_epoch) and opt.save_period != -1:
                            wandb_logger.log_model(
                                last.parent,
                                opt,
                                epoch,
                                fi,
                                best_model=best_fitness == fi)
                    del ckpt

                # Upload best model to s3
                if (epoch + 1) % 10 == 0 and epoch > 15:
                    if new_best_model:
                        strip_optimizer(best)
                        upload_model(opt)
                        new_best_model = False

                # print best model so far
                pfunc(best_model_msg)

                # Upload output log to s3
                upload_log(opt)

        ## END DDP VALIDATION
        except Exception as e:
            pfunc('Validation failed.')
        ################################################################

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training =====================================================================================================
    if rank in [-1, 0]:
        # ## Plots
        # if plots:
        #     plot_results(save_dir=save_dir)  # save as results.png
        #     if wandb_logger.wandb:
        #         files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
        #         wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
        #                                       if (save_dir / f).exists()]})

        # ## Test best.pt
        # pfunc('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        # # if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
        # for m in [best] if best.exists() else [last]:  # speed, mAP tests
        #     results, _, _ = test.test(data_dict,
        #                                 batch_size=test_batch_size,
        #                                 imgsz=imgsz_test,
        #                                 model=attempt_load(m, device),#.half(),
        #                                 single_cls=opt.single_cls,
        #                                 dataloader=orig_testloader,
        #                                 save_dir=save_dir,
        #                                 # verbose=nc < 50 and final_epoch,
        #                                 # plots=plots and final_epoch,
        #                                 wandb_logger=wandb_logger,
        #                                 plots=False,
        #                                 # compute_loss=compute_loss,
        #                                 )

        # ## Strip optimizers
        # final = best if best.exists() else last  # final model
        # for f in last, best:
        #     if f.exists():
        #         strip_optimizer(f)  # strip optimizers
        # if opt.bucket:
        #     os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload
        # if wandb_logger.wandb and not opt.evolve:  # Log the stripped model
        #     wandb_logger.wandb.log_artifact(str(final), type='model',
        #                                     name='run_' + wandb_logger.wandb_run.id + '_model',
        #                                     aliases=['latest', 'best', 'stripped'])

        wandb_logger.finish_run()
    else:
        dist.destroy_process_group()
    torch.cuda.empty_cache()
    return results
示例#8
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    print(f'Hyperparameters {hyp}')
    """
    训练日志包括:权重、tensorboard文件、超参数hyp、设置的训练参数opt(也就是epochs,batch_size等),result.txt
    result.txt包括: 占GPU内存、训练集的GIOU loss, objectness loss, classification loss, 总loss, 
    targets的数量, 输入图片分辨率, 准确率TP/(TP+FP),召回率TP/P ; 
    测试集的mAP50, [email protected]:0.95, GIOU loss, objectness loss, classification loss.
    还会保存batch<3的ground truth
    """
    # 获取保存路径、总轮次、批次、总批次(涉及到分布式训练)、权重、进程序号(主要用于分布式训练)
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    # 保存hyp和opt
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    # torch_distributed_zero_first同步所有进程
    # check_dataset检查数据集,如果没找到数据集则下载数据集(仅适用于项目中自带的yaml文件数据集)
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        # 加载模型,从google云盘中自动下载模型
        # 但通常会下载失败,建议提前下载下来放进weights目录
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        # 加载检查点
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        """
        这里模型创建,可通过opt.cfg,也可通过ckpt['model'].yaml
        这里的区别在于是否是resume,resume时会将opt.cfg设为空,则按照ckpt['model'].yaml创建模型
        这也影响着下面是否除去anchor的key(也就是不加载anchor),如果resume则不加载anchor
        主要是因为保存的模型会保存anchors,有时候用户自定义了anchor之后,再resume,则原来基于coco数据集的anchor就会覆盖自己设定的anchor,
        参考https://github.com/ultralytics/yolov5/issues/459
        所以下面设置了intersect_dicts,该函数就是忽略掉exclude
        """
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        # 显示加载预训练权重的的键值对和创建模型的键值对
        # 如果设置了resume,则会少加载两个键值对(anchors,anchor_grid)
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    """
    冻结模型层,设置冻结层名字即可
    具体可以查看https://github.com/ultralytics/yolov5/issues/679
    但作者不鼓励冻结层,因为他的实验当中显示冻结层不能获得更好的性能,参照:https://github.com/ultralytics/yolov5/pull/707
    并且作者为了使得优化参数分组可以正常进行,在下面将所有参数的requires_grad设为了True
    其实这里只是给一个freeze的示例
    """
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    """
    nbs为模拟的batch_size; 
    就比如默认的话上面设置的opt.batch_size为16,这个nbs就为64,
    也就是模型梯度累积了64/16=4(accumulate)次之后
    再更新一次模型,变相的扩大了batch_size
    """
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    # 根据accumulate设置权重衰减系数
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    # 将模型分成三组(weight、bn, bias, 其他所有参数)优化
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    # 选用优化器,并设置pg0组的优化方式
    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)
    # 设置weight、bn的优化方式
    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    # 设置biases的优化方式
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    # 打印优化信息
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # 设置cosine调度器,定义学习率衰减学习率衰减,这里为余弦退火方式进行衰减
    # 就是根据以下公式lf,epoch和超参数hyp['lrf']进行衰减
    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    #    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf']  # cosine
    lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']

    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if rank in [-1, 0] and wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project='YOLOv5'
            if opt.project == 'runs/train' else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # EMA
    # 在深度学习中,经常会使用EMA(指数移动平均)这个方法对模型的参数做滑动平均,以求提高测试指标并增加模型鲁棒,如果GPU进程数大于1,则不创建
    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    # best_fitness是以[0.0, 0.0, 0.1, 0.9]为系数并乘以[精确度, 召回率, [email protected], [email protected]:0.95]再求和所得
    # 根据best_fitness来保存best.pt
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        # 加载优化器与best_fitness
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        # 加载训练结果result.txt
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs  加载训练的轮次
        start_epoch = ckpt['epoch'] + 1
        """
        如果resume,则备份权重
        尽管目前resume能够近似100%成功的起作用了,参照:https://github.com/ultralytics/yolov5/pull/756
        但为了防止resume时出现其他问题,把之前的权重覆盖了,所以这里进行备份,参照:https://github.com/ultralytics/yolov5/pull/765
        """
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        """
        如果新设置epochs小于加载的epoch,
        则视新设置的epochs为需要再训练的轮次数而不再是总的轮次数
        """
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # 获取模型最大步长和模型输入图片分辨率
    gs = int(model.stride.max())  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])

    # 检查训练和测试图片分辨率确保能够整除总步长gs
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    # 分布式训练,参照:https://github.com/ultralytics/yolov5/issues/475
    # DataParallel模式,仅支持单机多卡
    # rank为进程编号, 这里应该设置为rank=-1则使用DataParallel模式
    # rank=-1且gpu数量=1时,不会进行分布式
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    # 使用跨卡同步BN
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # DDP mode
    # 如果rank不等于-1,则使用DistributedDataParallel模式
    # local_rank为gpu编号,rank为进程,例如rank=3,local_rank=0 表示第 3 个进程内的第 1 块 GPU。
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights,
                                            quad=opt.quad,
                                            prefix=colorstr('train: '))
    """
    获取标签中最大的类别值,并于类别数作比较
    如果小于类别数则表示有问题
    """
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        # 更新ema模型的updates参数,保持ema的平滑性
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            total_batch_size,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr('val: '))[0]

        if not opt.resume:
            # 将所有样本的标签拼接到一起shape为(total, 1),统计后做可视化
            labels = np.concatenate(dataset.labels, 0)
            # 获得所有样本的类别
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                # 根据上面的统计对所有样本的类别,中心点xy位置,长宽wh做可视化
                plot_labels(labels, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Check anchors
            """
            计算默认锚点anchor与数据集标签框的长宽比值
            标签的长h宽w与anchor的长h_a宽w_a的比值, 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的
            如果标签框满足上面条件的数量小于总数的99%,则根据k-mean算法聚类新的锚点anchor
            """
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters # 根据自己数据集的类别数设置分类损失的系数
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    # 根据labels初始化图片采样权重
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names
    """
    设置giou的值在objectness loss中做标签的系数, 使用代码如下
    tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype)
    这里model.gr=1,也就是说完全使用标签框与预测框的giou值来作为该预测框的objectness标签
    """

    # Start training
    t0 = time.time()
    # 获取热身训练的迭代次数
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    """
    设置学习率衰减所进行到的轮次,
    目的是打断训练后,--resume接着训练也能正常的衔接之前的训练进行学习率衰减
    """
    scheduler.last_epoch = start_epoch - 1  # do not move
    # 通过torch1.6自带的api设置混合精度训练
    scaler = amp.GradScaler(enabled=cuda)
    """
        打印训练和测试输入图片分辨率
        加载图片时调用的cpu进程数
        从哪个epoch开始训练
    """
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    # 加载图片权重(可选),定义进度条,设置偏差Burn-in,使用多尺度,前向传播,损失函数,反向传播,优化器,打印进度条,保存训练参数至tensorboard,计算mAP,保存结果到results.txt,保存模型(最好和最后)

    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            """
                如果设置进行图片采样策略,
                则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数
                通过random.choices生成图片索引indices从而进行采样
            """
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                # 类平衡采样
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP

# 如果是DDP模式,则广播采样策略
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        # 初始化训练时打印的平均损失信息
        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            # DDP模式下打乱数据, ddp.sampler的随机采样数据是基于epoch+seed作为随机种子,
            # 每次epoch不同,随机种子就不同
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar,
                        total=nb)  # progress bar    tqdm 创建进度条,方便训练时 信息的展示
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            """
                热身训练(前nw次迭代)
                在前nw次迭代中,根据以下方式选取accumulate和学习率
            """
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    """
                        bias的学习率从0.1下降到基准学习率lr*lf(epoch),其他的参数学习率从0增加到lr*lf(epoch)
                        lf为上面设置的余弦退火的衰减函数
                    """
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            # 设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # 混合精度
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                # 计算损失,包括分类损失,objectness损失,框的回归损失
                # loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失
                if (IS_Debug()):
                    #loss, loss_items = compute_loss(pred, targets.to(device), model, imgs)  # loss scaled by batch_size
                    loss, loss_items = compute_loss(
                        pred, targets.to(device),
                        model)  # loss scaled by batch_size
                else:
                    loss, loss_items = compute_loss(
                        pred, targets.to(device),
                        model)  # loss scaled by batch_size
                if rank != -1:
                    # 平均不同gpu之间的梯度
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            # 模型反向传播accumulate次之后再根据累积的梯度更新一次参数
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema is not None:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                # 打印显存,进行的轮次,损失,target的数量和图片的size等信息
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                # 将前三次迭代batch的标签框在图片上画出来并保存
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log({
                        "Mosaics": [
                            wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg')
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        # 进行学习率衰减
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP

            # 更新EMA的属性
            # 添加include的属性
            if ema:
                ema.update_attr(model,
                                include=[
                                    'yaml', 'nc', 'hyp', 'gr', 'names',
                                    'stride', 'class_weights'
                                ])

            # 判断该epoch是否为最后一轮
            final_epoch = epoch + 1 == epochs
            # 对测试集进行测试,计算mAP等指标
            # 测试时使用的是EMA模型
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            """
            保存模型,还保存了epoch,results,optimizer等信息,
            optimizer将不会在最后一轮完成后保存
            model保存的是EMA的模型
            """
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        """
            模型训练完后,strip_optimizer函数将optimizer从ckpt中去除;
            并且对模型进行model.half(), 将Float32的模型->Float16,
            可以减少模型大小,提高inference速度
        """
        final = best if best.exists() else last  # final model
        for f in [last, best]:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload

        # Plots
        if plots:
            # 可视化results.txt文件
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    'results.png', 'precision_recall_curve.png',
                    'confusion_matrix.png'
                ]
                wandb.log({
                    "Results": [
                        wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
                if opt.log_artifacts:
                    wandb.log_artifact(artifact_or_path=str(final),
                                       type='model',
                                       name=save_dir.stem)

        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for conf, iou, save_json in ([0.25, 0.45,
                                          False], [0.001, 0.65,
                                                   True]):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=total_batch_size,
                                          imgsz=imgsz_test,
                                          conf_thres=conf,
                                          iou_thres=iou,
                                          model=attempt_load(final,
                                                             device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=save_json,
                                          plots=False)

    else:
        dist.destroy_process_group()  # 释放显存

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
示例#9
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f"Hyperparameters {hyp}")
    save_dir, epochs, batch_size, total_batch_size, weights, rank = (
        Path(opt.save_dir),
        opt.epochs,
        opt.batch_size,
        opt.total_batch_size,
        opt.weights,
        opt.global_rank,
    )

    # Directories
    wdir = save_dir / "weights"
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / "last.pt"
    best = wdir / "best.pt"
    results_file = save_dir / "results.txt"

    # Save run settings
    with open(save_dir / "hyp.yaml", "w") as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / "opt.yaml", "w") as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != "cpu"
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict["train"]
    test_path = data_dict["val"]
    nc, names = (
        (1, ["item"]) if opt.single_cls else (int(data_dict["nc"]), data_dict["names"])
    )  # number classes, names
    assert len(names) == nc, "%g names found for nc=%g dataset in %s" % (
        len(names),
        nc,
        opt.data,
    )  # check

    # Model
    pretrained = weights.endswith(".pt")
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get("anchors"):
            ckpt["model"].yaml["anchors"] = round(hyp["anchors"])  # force autoanchor
        model = Model(opt.cfg or ckpt["model"].yaml, ch=3, nc=nc).to(device)  # create
        exclude = ["anchor"] if opt.cfg or hyp.get("anchors") else []  # exclude keys
        state_dict = ckpt["model"].float().state_dict()  # to FP32
        state_dict = intersect_dicts(
            state_dict, model.state_dict(), exclude=exclude
        )  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            "Transferred %g/%g items from %s"
            % (len(state_dict), len(model.state_dict()), weights)
        )  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print("freezing %s" % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(
        round(nbs / total_batch_size), 1
    )  # accumulate loss before optimizing
    hyp["weight_decay"] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(
            pg0, lr=hyp["lr0"], betas=(hyp["momentum"], 0.999)
        )  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(
            pg0, lr=hyp["lr0"], momentum=hyp["momentum"], nesterov=True
        )

    optimizer.add_param_group(
        {"params": pg1, "weight_decay": hyp["weight_decay"]}
    )  # add pg1 with weight_decay
    optimizer.add_param_group({"params": pg2})  # add pg2 (biases)
    logger.info(
        "Optimizer groups: %g .bias, %g conv.weight, %g other"
        % (len(pg2), len(pg1), len(pg0))
    )
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = (
        lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp["lrf"])
        + hyp["lrf"]
    )  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project="YOLOv5" if opt.project == "runs/train" else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get("wandb_id") if "ckpt" in locals() else None,
        )

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt["optimizer"] is not None:
            optimizer.load_state_dict(ckpt["optimizer"])
            best_fitness = ckpt["best_fitness"]

        # Results
        if ckpt.get("training_results") is not None:
            with open(results_file, "w") as file:
                file.write(ckpt["training_results"])  # write results.txt

        # Epochs
        start_epoch = ckpt["epoch"] + 1
        if opt.resume:
            assert (
                start_epoch > 0
            ), "%s training to %g epochs is finished, nothing to resume." % (
                weights,
                epochs,
            )
        if epochs < start_epoch:
            logger.info(
                "%s has been trained for %g epochs. Fine-tuning for %g additional epochs."
                % (weights, ckpt["epoch"], epochs)
            )
            epochs += ckpt["epoch"]  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [
        check_img_size(x, gs) for x in opt.img_size
    ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info("Using SyncBatchNorm()")

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size,
        gs,
        opt,
        hyp=hyp,
        augment=True,
        cache=opt.cache_images,
        rect=opt.rect,
        rank=rank,
        world_size=opt.world_size,
        workers=opt.workers,
    )
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert (
        mlc < nc
    ), "Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g" % (
        mlc,
        nc,
        opt.data,
        nc - 1,
    )

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            total_batch_size,
            gs,
            opt,
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
        )[
            0
        ]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, save_dir=save_dir)
                if tb_writer:
                    tb_writer.add_histogram("classes", c, 0)
                if wandb:
                    wandb.log(
                        {
                            "Labels": [
                                wandb.Image(str(x), caption=x.name)
                                for x in save_dir.glob("*labels*.png")
                            ]
                        }
                    )

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz)

    # Model parameters
    hyp["cls"] *= nc / 80.0  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device
    )  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(
        round(hyp["warmup_epochs"] * nb), 1000
    )  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info(
        "Image sizes %g train, %g test\n"
        "Using %g dataloader workers\nLogging results to %s\n"
        "Starting training for %g epochs..."
        % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs)
    )
    for epoch in range(
        start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = (
                    model.class_weights.cpu().numpy() * (1 - maps) ** 2
                )  # class weights
                iw = labels_to_image_weights(
                    dataset.labels, nc=nc, class_weights=cw
                )  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw, k=dataset.n
                )  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (
                    torch.tensor(dataset.indices)
                    if rank == 0
                    else torch.zeros(dataset.n)
                ).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ("\n" + "%10s" * 8)
            % ("Epoch", "gpu_mem", "box", "obj", "cls", "total", "targets", "img_size")
        )
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
            imgs,
            targets,
            paths,
            _,
        ) in (
            pbar
        ):  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = (
                imgs.to(device, non_blocking=True).float() / 255.0
            )  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()
                )
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x["lr"] = np.interp(
                        ni,
                        xi,
                        [
                            hyp["warmup_bias_lr"] if j == 2 else 0.0,
                            x["initial_lr"] * lf(epoch),
                        ],
                    )
                    if "momentum" in x:
                        x["momentum"] = np.interp(
                            ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]
                        )

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [
                        math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                    ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(
                        imgs, size=ns, mode="bilinear", align_corners=False
                    )

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device), model
                )  # loss scaled by batch_size
                if rank != -1:
                    loss *= (
                        opt.world_size
                    )  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = "%.3gG" % (
                    torch.cuda.memory_reserved() / 1e9
                    if torch.cuda.is_available()
                    else 0
                )  # (GB)
                s = ("%10s" * 2 + "%10.4g" * 6) % (
                    "%g/%g" % (epoch, epochs - 1),
                    mem,
                    *mloss,
                    targets.shape[0],
                    imgs.shape[-1],
                )
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f"train_batch{ni}.jpg"  # filename
                    plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log(
                        {
                            "Mosaics": [
                                wandb.Image(str(x), caption=x.name)
                                for x in save_dir.glob("train*.jpg")
                            ]
                        }
                    )

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x["lr"] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model, include=["yaml", "nc", "hyp", "gr", "names", "stride"]
                )
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0,
                )

            # Write
            with open(results_file, "a") as f:
                f.write(
                    s + "%10.4g" * 7 % results + "\n"
                )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system(
                    "gsutil cp %s gs://%s/results/results%s.txt"
                    % (results_file, opt.bucket, opt.name)
                )

            # Log
            tags = [
                "train/box_loss",
                "train/obj_loss",
                "train/cls_loss",  # train loss
                "metrics/precision",
                "metrics/recall",
                "metrics/mAP_0.5",
                "metrics/mAP_0.5:0.95",
                "val/box_loss",
                "val/obj_loss",
                "val/cls_loss",  # val loss
                "x/lr0",
                "x/lr1",
                "x/lr2",
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(
                np.array(results).reshape(1, -1)
            )  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, "r") as f:  # create checkpoint
                    ckpt = {
                        "epoch": epoch,
                        "best_fitness": best_fitness,
                        "training_results": f.read(),
                        "model": ema.ema,
                        "optimizer": None if final_epoch else optimizer.state_dict(),
                        "wandb_id": wandb_run.id if wandb else None,
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ""
        fresults, flast, fbest = (
            save_dir / f"results{n}.txt",
            wdir / f"last{n}.pt",
            wdir / f"best{n}.pt",
        )
        for f1, f2 in zip(
            [wdir / "last.pt", wdir / "best.pt", results_file], [flast, fbest, fresults]
        ):
            if f1.exists():
                os.rename(f1, f2)  # rename
                if str(f2).endswith(".pt"):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        "gsutil cp %s gs://%s/weights" % (f2, opt.bucket)
                    ) if opt.bucket else None  # upload
        # Finish
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    "results.png",
                    "precision_recall_curve.png",
                    "confusion_matrix.png",
                ]
                wandb.log(
                    {
                        "Results": [
                            wandb.Image(str(save_dir / f), caption=f)
                            for f in files
                            if (save_dir / f).exists()
                        ]
                    }
                )
        logger.info(
            "%g epochs completed in %.3f hours.\n"
            % (epoch - start_epoch + 1, (time.time() - t0) / 3600)
        )
    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
示例#10
0
文件: train.py 项目: IvDmNe/YOLOv5-CL
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(
        opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights dfirectory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = str(log_dir / 'results.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs_init, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    if opt.reg_lambda != 0:
        # the regularization is based on Synaptic Intelligence as described in the
        # paper. ewcData is a list of two elements (best parametes, importance)
        # while synData is a dictionary with all the trajectory data needed by SI
        model.ewcData, model.synData = create_syn_data(model)

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    optimizer = optim.SGD(pg0,
                          lr=hyp['lr0'],
                          momentum=hyp['momentum'],
                          nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        id = ckpt.get('wandb_id') if 'ckpt' in locals() else None
        wandb_run = wandb.init(config=opt,
                               resume="allow",
                               project="YOLOv5",
                               name=os.path.basename(log_dir),
                               id=id)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            shutil.copytree(wdir, wdir.parent /
                            f'weights_backup_epoch{start_epoch - 1}'
                            )  # save previous weights
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)

    all_test_dataloader = create_dataloader(test_path,
                                            imgsz_test,
                                            total_batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=False,
                                            cache=opt.cache_images
                                            and not opt.notest,
                                            rect=True,
                                            rank=-1,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            n_batch=-1)[0]

    root = 'G:/projects/core50_350_1f/batches/'
    paths = os.listdir(root)
    train_paths = []
    valid_paths = []

    for p in paths:
        if 'train' in p:
            train_paths.append(root + p)
        elif 'val' in p:
            valid_paths.append(root + p)
        else:
            print(p)

        # external_memory = ext_memory()
    extMem = externalMemory()
    for core_batch in range(11):
        # Trainloader

        if opt.reg_lambda != 0:
            init_batch(model, model.ewcData, model.synData)

        print(f'------------CORE50 itertaion №:{core_batch}------------')

        external_files_path = extMem.file
        if core_batch > 0:
            train_path = [train_paths[core_batch], external_files_path]
        else:
            train_path = train_paths[core_batch]

        extMem.update_memory(train_paths[core_batch],
                             update_iters=10 if core_batch == 0 else 1)

        dataloader, dataset = create_dataloader(
            train_path,
            imgsz,
            batch_size,
            gs,
            opt,
            hyp=hyp,
            augment=True,
            cache=opt.cache_images,
            rect=opt.rect,
            rank=rank,
            world_size=opt.world_size,
            workers=opt.workers,
        )

        mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
        nb = len(dataloader)  # number of batches
        assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
            mlc, nc, opt.data, nc - 1)

        testloader = create_dataloader(valid_paths[core_batch],
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers)[0]  # testloader

        #if not opt.resume:
        labels = np.concatenate(dataset.labels, 0)
        c = torch.IntTensor(labels[:, 0])  # classes
        plot_labels(labels, save_dir=log_dir)
        print(torch.bincount(c))
        if tb_writer:
            # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
            tb_writer.add_histogram('classes', c, core_batch)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

        # model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights
        model.names = names

        # Start training
        t0 = time.time()
        nw = max(
            round(hyp['warmup_epochs'] * nb),
            1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
        # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
        maps = np.zeros(nc)  # mAP per class
        results = (0, 0, 0, 0, 0, 0, 0
                   )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
        scheduler.last_epoch = start_epoch - 1  # do not move
        scaler = amp.GradScaler(enabled=cuda)
        logger.info(
            'Image sizes %g train, %g test\n'
            'Using %g dataloader workers\nLogging results to %s\n'
            'Starting training for %g epochs...' %
            (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
        # update number of epochs to iterative training
        if core_batch != 0:
            epochs = opt.epochs_iter

        # x_train, y_train = dataset.get_all_data()

        for epoch in range(
                start_epoch, epochs
        ):  # epoch ------------------------------------------------------------------
            model.train()

            mloss = torch.zeros(4, device=device)  # mean losses
            logger.info(
                ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                       'total', 'targets', 'img_size'))

            # x_train_splitted = torch.split(x_train, 4)
            # y_train_splitted = torch.split(y_train, 4)
            # pbar = enumerate(zip(x_train_splitted, y_train_splitted))
            pbar = enumerate(dataloader)
            pbar = tqdm(pbar, total=nb)  # progress bar
            optimizer.zero_grad()
            for i, (
                    imgs, targets, _, _
            ) in pbar:  # batch -------------------------------------------------------------

                # imgs = x_train[i * batch_size:(i + 1) * batch_size]
                # targets = y_train[i * batch_size:(i + 1) * batch_size]
                #
                # # preprocess tensor to proper form
                # # img, label = zip(imgs, targets)  # transposed
                # for i, l in enumerate(targets):
                #     l[:, 0] = i  # add target image index for build_targets()
                #
                # imgs = torch.stack(imgs)
                # targets = torch.cat(targets)

                ni = i + nb * epoch  # number integrated batches (since train start)
                imgs = imgs.to(device, non_blocking=True).float(
                ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

                if opt.reg_lambda != 0:
                    pre_update(model, model.synData)

                # Warmup
                if ni <= nw:
                    xi = [0, nw]  # x interp
                    # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                    accumulate = max(
                        1,
                        np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                    for j, x in enumerate(optimizer.param_groups):
                        # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                        x['lr'] = np.interp(ni, xi, [
                            hyp['warmup_bias_lr'] if j == 2 else 0.0,
                            x['initial_lr'] * lf(epoch)
                        ])
                        if 'momentum' in x:
                            x['momentum'] = np.interp(
                                ni, xi,
                                [hyp['warmup_momentum'], hyp['momentum']])

                # # Multi-scale
                # if opt.multi_scale:
                #     sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                #     sf = sz / max(imgs.shape[2:])  # scale factor
                #     if sf != 1:
                #         ns = [math.ceil(x * sf / gs) * gs for x in
                #               imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                #         imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

                # Forward
                with amp.autocast(enabled=cuda):
                    pred = model(imgs)  # forward
                    loss, loss_items = compute_loss(
                        pred, targets.to(device),
                        model)  # loss scaled by batch_size
                # Backward
                scaler.scale(loss).backward()

                # Optimize
                if ni % accumulate == 0:
                    scaler.step(optimizer)  # optimizer.step

                    if opt.reg_lambda != 0:
                        post_update(model, model.synData)

                    scaler.update()
                    optimizer.zero_grad()
                    # if ema:
                    #     ema.update(model)

                # Print
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # end batch ------------------------------------------------------------------------------------------------

            # Scheduler
            lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
            scheduler.step()

            # mAP
            results, maps, times = test.test(
                opt.data,
                batch_size=total_batch_size,
                imgsz=imgsz_test,
                # model=ema.ema,
                model=model,
                single_cls=opt.single_cls,
                dataloader=testloader,
                save_dir=log_dir,
                plots=epoch == 0,  # plot first and last
                log_imgs=opt.log_imgs)

            # wandb.log({'per class/AP per class': maps})

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/giou_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/giou_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = not opt.nosave
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': f.read(),
                        # 'model': ema.ema,
                        'model': model,
                        'optimizer': optimizer.state_dict(),
                        'wandb_id': wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
        # end training

        #consolidate_weights(model, cur_class)
        if opt.reg_lambda != 0:
            update_ewc_data(model, model.ewcData, model.synData, 0.001, 1)

        if rank in [-1, 0]:
            # Strip optimizers
            n = opt.name if opt.name.isnumeric() else ''
            fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
            for f1, f2 in zip(
                [wdir / 'last.pt', wdir / 'best.pt', results_file],
                [flast, fbest, fresults]):
                if os.path.exists(f1):
                    os.rename(f1, f2)  # rename
                    if str(f2).endswith('.pt'):  # is *.pt
                        strip_optimizer(f2)  # strip optimizer
                        os.system(
                            'gsutil cp %s gs://%s/weights' %
                            (f2, opt.bucket)) if opt.bucket else None  # upload
            # Finish
            plot_results(save_dir=log_dir)  # save as results.png
            logger.info('%g epochs completed in %.3f hours.\n' %
                        (epoch - start_epoch + 1, (time.time() - t0) / 3600))

        dist.destroy_process_group() if rank not in [-1, 0] else None
        torch.cuda.empty_cache()
        results, maps, times = test.test(
            opt.data,
            batch_size=total_batch_size,
            imgsz=imgsz_test,
            #model=ema.ema,
            model=model,
            single_cls=opt.single_cls,
            dataloader=all_test_dataloader,
            save_dir=log_dir,
            #plots=epoch == 0 or final_epoch,  # plot first and last
            log_imgs=opt.log_imgs,
            verbose=True)

        #wandb.log({'per class/AP per class All': maps[0]})
        #tb_writer.add_scalar('per class/AP per class All', maps[0])

        # Log
        tags = [  # train loss
            'test/precision', 'test/recall', 'test/mAP_0.5',
            'test/mAP_0.5:0.95', 'test/giou_loss', 'test/obj_loss',
            'test/cls_loss'
        ]  # params
        for x, tag in zip(list(results), tags):
            if tb_writer:
                tb_writer.add_scalar(tag, x, core_batch)  # tensorboard
            if wandb:
                wandb.log({tag: x})  # W&B

    return results
示例#11
0
def train(hyp, opt, device):
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
    Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
    do_semi = opt.do_semi
    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  #create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)
    nc = 1 if opt.single_cls else int(data_dict['nc'])  #number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  #load checkpoint
        model = Model(opt.cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  #create
        exclude = [
            'anchor'
        ] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [
        ]  #exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  #intersect
        model.load_state_dict(state_dict, strict=False)  #load

    else:
        model = Model(opt.cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)

    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  #check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Optimizer
    nbs = 64
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply dacay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust betal to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    del pg0, pg1, pg2

    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0

    if pretrained:
        # optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(
                ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weight, epochs)
        if epochs < start_epoch:
            epochs += ckpt['epoch']
        del ckpt, state_dict

        # Image sizes
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        nl = model.model[
            -1].nl  # number of detection layer (used for scaling hyp['obj])
        imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                             ]  # verify imgsz are gs-multiples

        # DP mode
        if cuda and rank == -1 and torch.cuda.device_count() > 1:
            model = torch.nn.DataParallel(model)

        # SyncBatchNorm
        if opt.sync_bn and cuda and rank != -1:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(
                device)

        # Trainloader
    if do_semi:
        dataloader, dataset, unlabeldataloader = create_dataloader(
            train_path,
            imgsz,
            batch_size,
            gs,
            opt,
            hyp=hyp,
            augment=True,
            cache=opt.cache_images,
            rect=opt.rect,
            rank=rank,
            world_size=opt.world_size,
            workers=opt.workers,
            image_weights=opt.image_weights,
            quad=opt.quad,
            prefix=colorstr('train: '),
            do_semi=opt.do_semi)
    else:
        dataloader, dataset = create_dataloader(
            train_path,
            imgsz,
            batch_size,
            gs,
            opt,
            hyp=hyp,
            augment=True,
            cache=opt.cache_images,
            rect=opt.rect,
            rank=rank,
            world_size=opt.world_size,
            workers=opt.workers,
            image_weights=opt.image_weights,
            quad=opt.quad,
            prefix=colorstr('train: '),
            do_semi=opt.do_semi)

    # Train teacher model
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches

    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # process 0
    if rank in [-1, 0]:
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            batch_size * 2,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr('val: '),
            do_semi=False)[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and rank != 1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank,
                    find_unused_parameters=any(
                        isinstance(layer, nn.MultiheadAttention)
                        for layer in model.modules()))

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Train teacher model --> burn in
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    burnin_epochs = epochs / 2

    # burn in
    for epoch in range(start_epoch,
                       burnin_epochs):  # epoch-------------------------
        model.train()
        nb = len(dataloader)
        mloss = torch.zeros(4, device=device)  # mean loss
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)

        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warm up
            if ni <= [0, nw]:
                xi = [0, nw]
                accumulate = max(
                    1, np.interp(ni, xi, [1, nbs / total_batch_size].round()))
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_item = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between device in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_item) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'gr', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP

                results, maps, times = test.test(data_dict,
                                                 batch_size=batch_size * 2,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 verbose=nc < 50
                                                 and final_epoch,
                                                 plots=plots and final_epoch,
                                                 compute_loss=compute_loss)

        fi = fitness(np.array(results).reshape(
            1, -1))  # weighted combination of [P, R, mAP@50, [email protected]]
        if fi > best_fitness:
            best_fitness = fi

        if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
            ckpt = {
                'epoch':
                epoch,
                'best_fitness':
                best_fitness,
                'training_results':
                results_file.read_text(),
                'model':
                deepcopy(model.module if is_parallel(model) else model).half(),
                'ema':
                deepcopy(ema.ema).half(),
                'updates':
                ema.updates,
                'optimizer':
                optimizer.state_dict()
            }
            if best_fitness == fi:
                torch.save(ckpt, best)
            del ckpt

        # end epoch ----------------------------------------------------------------------------
    # end warm up

    # get persudo label
    # STAC
    # first apply weak augmentation on unlabeled dataset then use teacher net to predict the persudo labels
    # Then apply strong augmentation on unlabeled dataset, use student net to get the logists and compute the unlabeled loss.

    model.eval()
    img = []
    target = []
    Path = []
    imgsz = opt.img_size
    for idx, batch in tqdm(enumerate(unlabeldataloader),
                           total=len(unlabeldataloader)):
        imgs0, _, path, _ = batch  # from uint8 to float16

        with torch.no_grad():
            pred = model(imgs0.to(device, non_blocking=True).float() /
                         255.0)[0]

        gn = torch.tensor(imgs0.shape)[[3, 2, 3, 2]]
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)

        for index, pre in enumerate(pred):
            predict_number = len(pre)
            if predict_number == 0:
                continue
            Class = pre[:, 5].view(predict_number, 1).cpu()
            XYWH = (xyxy2xywh(pre[:, :4])).cpu()
            XYWH /= gn
            pre = torch.cat((torch.zeros(predict_number, 1), Class, XYWH),
                            dim=1)
            img.append(imgs0[index])
            target.append(pre)
            Path.append(path[index])

    unlabeldataset = semiDataset(img, target, Path)
    del img, targets, Path
    model.train()
示例#12
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(
        opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights dfirectory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = str(log_dir / 'results.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs_init, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    optimizer = optim.SGD(pg0,
                          lr=hyp['lr0'],
                          momentum=hyp['momentum'],
                          nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        id = ckpt.get('wandb_id') if 'ckpt' in locals() else None
        wandb_run = wandb.init(config=opt,
                               resume="allow",
                               project="YOLOv5",
                               name=os.path.basename(log_dir),
                               id=id)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            shutil.copytree(wdir, wdir.parent /
                            f'weights_backup_epoch{start_epoch - 1}'
                            )  # save previous weights
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)

    all_test_dataloader = create_dataloader(
        test_path,
        # '/media/ivan/share/core50_350_1f/test.txt',
        imgsz_test,
        total_batch_size,
        gs,
        hyp=hyp,
        augment=False,
        # cache=opt.cache_images and not opt.notest,
        rect=False,
        rank=-1,
        world_size=opt.world_size,
        workers=opt.workers)[0]

    root = '/media/ivan/share/core50_350_1f/batches/'
    paths = os.listdir(root)
    train_paths = []
    valid_paths = []

    for p in paths:
        if 'train' in p:
            train_paths.append(root + p)
        elif 'val' in p:
            valid_paths.append(root + p)
        else:
            print(p)

    extMem = externalMemory(size=200)
    print(f'external memory file: {extMem.get_memory_file()}')

    train_paths = [
        '/media/ivan/share/demoset/train_4.txt',
        '/media/ivan/share/demoset/train_2.txt'
    ]
    valid_paths = [
        '/media/ivan/share/demoset/valid.txt',
        '/media/ivan/share/demoset/valid.txt'
    ]

    # prepare_params(hyp, opt, device, tb_writer=None, wandb=None)

    for core_batch in range(2):
        print(f'------------CORE50 itertaion №:{core_batch}------------')

        train_on_large_batch(core_batch,
                             train_paths[core_batch],
                             valid_paths[core_batch],
                             model,
                             device,
                             logger,
                             imgsz=imgsz,
                             imgsz_test=imgsz_test,
                             gs=gs,
                             opt=opt,
                             hyp=hyp,
                             nc=nc,
                             log_dir=log_dir,
                             tb_writer=tb_writer,
                             names=names,
                             optimizer=optimizer,
                             extMem=extMem,
                             scheduler=scheduler,
                             lf=lf,
                             best_fitness=best_fitness,
                             wandb_run=wandb_run)

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    results, maps, times = test.test(
        opt.data,
        batch_size=total_batch_size,
        imgsz=imgsz_test,
        model=model,
        single_cls=opt.single_cls,
        dataloader=all_test_dataloader,
        save_dir=log_dir / 'images' / str(core_batch),
        # plots=epoch == 0 or final_epoch,  # plot first and last
        log_imgs=opt.log_imgs,
        verbose=True)

    # wandb.log({'per class/AP per class All': maps[0]})
    # tb_writer.add_scalar('per class/AP per class All', maps[0])

    # Log
    tags = [  # train loss
        'test/precision', 'test/recall', 'test/mAP_0.5', 'test/mAP_0.5:0.95',
        'test/giou_loss', 'test/obj_loss', 'test/cls_loss'
    ]  # params
    for x, tag in zip(list(results), tags):
        if tb_writer:
            tb_writer.add_scalar(tag, x, core_batch)  # tensorboard
        if wandb:
            wandb.log({tag: x})  # W&B

    return results
示例#13
0
class Detector:

    def __init__(self, load_ext_mem=False):
        self.logger = logging.getLogger(__name__)

        self.device = torch.device('cuda:0')


        opt, hyp = get_opt_and_hyp()

        self.logger.info(f'Hyperparameters {hyp}')
        # self.log_dir = Path(opt.logdir) # logging directory
        self.log_dir = increment_dir(Path(opt.logdir) / 'exp', opt.name)  # runs/exp1
        self.log_dir = Path(self.log_dir)
        wdir = self.log_dir / 'weights'  # weights dfirectory
        os.makedirs(wdir, exist_ok=True)
        # last = wdir / 'last.pt'
        # best = wdir / 'best.pt'
        # results_file = str(log_dir / 'results.txt')
        # epochs, batch_size, total_batch_size, weights, rank = \
        #     opt.epochs_init, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

        # Save run settings
        with open(self.log_dir / 'hyp.yaml', 'w') as f:
            yaml.dump(hyp, f, sort_keys=False)
        with open(self.log_dir / 'opt.yaml', 'w') as f:
            yaml.dump(vars(opt), f, sort_keys=False)

        # Configure
        init_seeds(2)
        # with open(opt.data) as f:
        #     data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
 
       # check_dataset(data_dict)  # check


        self.nc = 6
        self.names = ['???'] * 6 
       # assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

        # Model
        weights = opt.weights
        pretrained = weights.endswith('.pt')
        if pretrained:
            attempt_download(weights)  # download if not found locally
            ckpt = torch.load(weights, map_location=self.device)  # load checkpoint
            if hyp.get('anchors'):
                ckpt['model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchor
            self.model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=self.nc).to(self.device)  # create
            exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else []  # exclude keys
            state_dict = ckpt['model'].float().state_dict()  # to FP32
            state_dict = intersect_dicts(state_dict, self.model.state_dict(), exclude=exclude)  # intersect
            self.model.load_state_dict(state_dict, strict=False)  # load
            self.logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(self.model.state_dict()), weights))  # report
        else:
            self.model = Model(opt.cfg, ch=3, nc=self.nc).to(self.device)  # create

        # Freeze
        # freeze = []  # parameter names to freeze (full or partial)
        # for k, v in self.model.named_parameters():
        #     v.requires_grad = True  # train all layers
        #     if any(x in k for x in freeze):
        #         print('freezing %s' % k)
        #         v.requires_grad = False


        # Optimizer
        nbs = 64  # nominal batch size
        accumulate = max(round(nbs / opt.total_batch_size), 1)  # accumulate loss before optimizing
        hyp['weight_decay'] *= opt.total_batch_size * accumulate / nbs  # scale weight_decay

        pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
        for k, v in self.model.named_modules():
            if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
                pg2.append(v.bias)  # biases
            if isinstance(v, nn.BatchNorm2d):
                pg0.append(v.weight)  # no decay
            elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
                pg1.append(v.weight)  # apply decay

        self.optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

        self.optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
        self.optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
        #logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
        del pg0, pg1, pg2

        # Scheduler https://arxiv.org/pdf/1812.01187.pdf
        # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
        # lf = lambda x: ((1 + math.cos(x * math.pi / opt.epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf']  # cosine
        #self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lf)
        # plot_lr_scheduler(optimizer, scheduler, epochs)

        
        # Resume
        # start_epoch = 0
        self.best_fitness = 0.0
        if pretrained:
            # Optimizer
            if ckpt['optimizer'] is not None:
                self.optimizer.load_state_dict(ckpt['optimizer'])
                self.best_fitness = ckpt['best_fitness']

            # Epochs
            # start_epoch = ckpt['epoch'] + 1


            del ckpt, state_dict

        # Image sizes
        self.gs = int(max(self.model.stride))  # grid size (max stride)
        


        # Model parameters
        hyp['cls'] *= self.nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
        self.model.nc = self.nc  # attach number of classes to model
        self.model.hyp = hyp  # attach hyperparameters to model
        self.model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)


        # extenral memory
        self.extMem = externalMemory(size=200)
        print(f'external memory file: {self.extMem.get_memory_file()}')
        self.opt = opt
        self.hyp = hyp

        self.added_classes = 0
      #  self.train.n_iter = 0

    def train(self, train_files, class_names, valid_file=None):

        
       # self.log_dir = Path(str(self.log_dir) + str(train.n_iter))

        if not isinstance(class_names, list):
            class_names = [class_names]
        n_classes_to_add = len(class_names)

        if not isinstance(train_files, list):
            train_files = [train_files]

        fix_class_id(train_files, class_names, self.added_classes)
        # fix_class_id([valid_file], class_names, self.added_classes)

        use_ext_mem = False if self.added_classes == 0 else True
        for cn in class_names:
            self.names[self.added_classes] = cn
            self.added_classes += 1


        


        train_on_large_batch(n_classes_to_add, train_files, self.model, self.device, self.logger,
                             valid_path=valid_file, imgsz=self.opt.img_size,
                             imgsz_test=self.opt.img_size, gs=self.gs,
                             opt=self.opt, hyp=self.hyp, nc=self.nc, log_dir=self.log_dir, tb_writer=None,
                             names=self.names, optimizer=self.optimizer,
                             extMem=self.extMem, best_fitness=self.best_fitness, use_ext_mem=use_ext_mem)


        #self.model = attempt_load('runs/weights/best.pt')

    def save_state(self, path='detector.pckl'):
        with open(path, 'wb') as f:
            pickle.dump(self, f)

    def detect(self, image):
        # image: array
        # return [new_image, bboxes]
        return detect_img(image, self.model, augment=True)

    def find_object(self, object_name:str, image):
        # returns x,y,w,h of found object
        # if unknown object return "unknown object"
        # if not found return "not found"
        det = detect_img(image, self.model)[1]

        if object_name not in self.names:
            print(f'Unknown object:{object_name} in list: {self.names}')
            return

        obj_index = self.names.index(object_name)
        ret_bboxes = det[det[..., -1] == obj_index]

        if ret_bboxes.nelement() == 0:
            print(f'{object_name} not found')
            return

        return ret_bboxes  # each bbox: [x1, y1, x2, y2, confidence, class_index]