示例#1
0
pre_file = 'incept_temporal{}_{}'.format(temp_rate, n_neurons)

if train & (not retrain):
    weights = 'imagenet'
else:
    weights = None
if args.fine == 1:
    fine = True
else:
    fine = False

result_model = models.InceptionTemporal(n_neurons=n_neurons,
                                        seq_len=seq_len,
                                        classes=classes,
                                        weights=weights,
                                        dropout=dropout,
                                        fine=fine,
                                        retrain=retrain,
                                        pre_file=pre_file,
                                        old_epochs=old_epochs,
                                        cross_index=cross_index)

if (args.summary == 1):
    result_model.summary()
    sys.exit()

lr = args.lr
decay = args.decay

result_model.compile(loss='categorical_crossentropy',
                     optimizer=optimizers.SGD(lr=lr,
                                              decay=decay,
model_s = models.InceptionSpatial(n_neurons=n_neurons,
                                  seq_len=seq_len,
                                  classes=classes,
                                  weights=None,
                                  dropout=dropout,
                                  fine=False,
                                  retrain=False,
                                  pre_file=pre_file,
                                  old_epochs=old_epochs,
                                  cross_index=cross_index)

model_t = models.InceptionTemporal(n_neurons=n_neurons,
                                   seq_len=seq_len,
                                   classes=classes,
                                   weights=None,
                                   dropout=dropout,
                                   fine=False,
                                   retrain=False,
                                   pre_file=pre_file,
                                   old_epochs=old_epochs,
                                   cross_index=cross_index)

print(glob.glob('weights/' + pre_file + '-{:2d}*.hdf5'.format(epochs))[-1])
model_s.load_weights(
    glob.glob('weights/' + pre_file + '-{:2d}*.hdf5'.format(epochs))[-1])

#model_s.summary()

weights = model_s.layers[1].get_weights()
#print(len(weights))
weights_0 = weights[0]
print(np.asarray(weights_0).shape)