示例#1
0
    def test_FormationTrack(self):

        PD=0.7
        PFD=1.e-3
        NFC=4
        NFA=1000

        model_factory = models.SimpleModelFactory(
            model = models.KalmanModel,
            dT=1.0,
            q=0.001
        )

        sensor = sensors.BaseSensor(
            PD=PD,
            VC=1.0,
            PFA=1e-6,
            BNT=0.03
        )

        # assign 1 track
        obs = models.Obs(np.array([1.0, 2.0]), np.eye(2), sensor )
        trk = tracks.FormationTrack(obs,model_factory.create(obs))

        # assign 2 track
        obs = models.Obs(np.array([3.0, 4.0]), np.eye(2), sensor )
        trk = tracks.FormationTrack(obs,model_factory.create(obs))
示例#2
0
    def test_TrackerEvaluator(self):

        eval = trackers.TrackerEvaluator(
            tracker=trackers.GNN(sensor=sensors.BaseSensor(R=np.diag(
                [0.001, 0.001]),
                                                           PD=0.7,
                                                           VC=1.0,
                                                           PFA=1e-6,
                                                           BNT=0.03,
                                                           y_mins=[-250, -250],
                                                           y_maxs=[+250, +250],
                                                           y_stps=[1, 1]),
                                 model_factory=models.SimpleModelFactory(
                                     model=models.KalmanModel, dT=1.0, q=1.0),
                                 track_factory=tracks.BaseTrackFactory(
                                     track=tracks.ScoreManagedTrack)),
            tgt_list=[
                models.SimpleTarget(SD=2,
                                    x0=[0., 0., +0., +1.],
                                    start_time=0.0),
                models.SimpleTarget(SD=2,
                                    x0=[0., 10., +1., -1.],
                                    start_time=0.0),
                models.SimpleTarget(SD=2,
                                    x0=[10., 10., -1., -1.],
                                    start_time=0.0),
                models.SimpleTarget(SD=2,
                                    x0=[10., 0., +0., +1.],
                                    start_time=1.0)
            ])

        # eval.plot_position()
        eval.estimate_track_statistics()
示例#3
0
    def test_SimpleManagedTrack(self):
        
        ND=3
        
        tracker = MockTracker(
            sensor=sensors.BaseSensor(
                PD=0.7,
                VC=1.0,
                PFA=1e-6,
                BNT=0.03
            ),
            model_factory=models.SimpleModelFactory(
                model=models.KalmanModel,
                dT=1.0,
                q=0.001
            )
        )

        tgt = np.array([0.0,  0.0, 1.0, 1.0])

        for k in range(200):

            tracker.count = k

            if k==0:
                obs = models.Obs(tgt[:2], np.eye(2), tracker.sensor )
                trk = tracks.SimpleManagedTrack(
                    obs,
                    tracker.model_factory.create(obs),
                    ND=ND
                )
                
            if 0 < k <= 100:
                tgt[0:2] += tgt[2:]
                
                trk.assign(models.Obs(
                    # tgt[:2],  np.eye(2), tracker.sensor
                    np.random.multivariate_normal(tgt[:2], np.eye(2)), np.eye(2), tracker.sensor
                ))

            if 100 < k:
                trk.unassign(tracker.sensor)


            # judge_deletion test
            if 0 <= k < 100+ND:
                np.testing.assert_equal(trk.judge_deletion(), False)
                pass

            elif 100+ND <= k:
                np.testing.assert_equal(trk.judge_deletion(), True)
                pass

        # after loop
        if False:
            # trk.plot_obs_list()
            # trk.plot_mdl_list()
            plt.show()
示例#4
0
    def test_SimpleModelFactory(self):
        # to_record/from_record check
        mf = models.SimpleModelFactory(model=models.KalmanModel, dT=1.0, q=1.0)

        mdl1 = mf.create(
            models.Obs(y=np.array([1, 0]),
                       R=np.zeros((2, 2)) + 0.1,
                       sensor=sensors.BaseSensor()))

        series = mdl1.to_record()
        mdl2 = mf.create_from_record(series)
示例#5
0
    def test_GNN(self):
        tracker = trackers.GNN(sensor=sensors.BaseSensor(PD=0.7,
                                                         VC=1.0,
                                                         PFA=1e-6,
                                                         BNT=0.03),
                               model_factory=models.SimpleModelFactory(
                                   model=models.KalmanModel, dT=1.0, q=0.001),
                               track_factory=tracks.BaseTrackFactory(
                                   track=tracks.ScoreManagedTrack))

        tgt_list = [
            np.array([-1, 1]),
            np.array([20, 36]),
        ]

        tracker.register_scan([models.Obs(y, np.eye(2) * 5) for y in tgt_list])

        tgt_list = [
            np.array([0, 0]),
            np.array([19, 37]),
            np.array([40, 50]),
        ]

        tracker.register_scan([models.Obs(y, np.eye(2) * 5) for y in tgt_list])
示例#6
0
    def test_ScoreManagedTrack(self):
        """Track Score Function

            ref) Design and Analysis of Modern Tracking Systems
                        6.2 Track Score Function
        """
        PD=0.7
        PFD=1.e-3
        NFC=4
        NFA=1000

        tracker = MockTracker(
            sensor=sensors.BaseSensor(
                PD=PD,
                VC=1.0,
                PFA=1e-6,
                BNT=0.03
            ),
            model_factory=models.SimpleModelFactory(
                model=models.KalmanModel,
                dT=1.0,
                q=0.001
            )
        )

        tgt = np.array([0.0,  0.0, 1.0, 1.0])
        com_list = []
        del_list = []

        for k in range(200):

            tracker.count = k

            if k==0:
                obs = models.Obs(tgt[:2], np.eye(2), tracker.sensor )
                trk = tracks.ScoreManagedTrack(
                    obs,
                    tracker.model_factory.create(obs),
                    PFD=PFD,
                    alpha=NFC/3600/NFA,
                    beta=0.1
                )
                
            if 0 < k <= 100:
                tgt[0:2] += tgt[2:]

                obs = models.Obs(
                    # tgt[:2],  np.eye(2), tracker.sensor
                    np.random.multivariate_normal(tgt[:2], np.eye(2)), np.eye(2), tracker.sensor
                )
                
                if np.random.choice([True, False], p=[PD, 1-PD]):
                    trk.assign(obs)
                else:
                    trk.unassign(tracker.sensor)

            if 100 < k:
                trk.unassign(tracker.sensor)

            com_list.append(trk.judge_confirmation())
            del_list.append(trk.judge_deletion())

        # after loop
        if False:
            # trk.plot_obs_list()
            # trk.plot_mdl_list()
            # trk.plot_scr_list()
            plt.plot([i for i in range(200)], np.array(com_list, int) - np.array(del_list, int))
            plt.show()
示例#7
0
    def test_JPDA(self):
        """Calculate Association of Observations by JPDA Method

            ref) Design and Analysis of Modern Tracking Systems
                        6.6.2 Extension to JPDA
        """

        tracker = trackers.JPDA(
            sensor=sensors.BaseSensor(PD=0.7, VC=1.0, PFA=1e-6, BNT=0.03),
            model_factory=models.SimpleModelFactory(
                model=models.PDAKalmanModel, dT=1.0, q=0.0),
            track_factory=tracks.BaseTrackFactory(track=tracks.PDATrack,
                                                  gate=8))

        a = 2
        x1 = (a**2 + 2 - 2.5) / 2 / a
        x2 = (a**2 + 4 - 3) / 2 / a

        obs_list = [
            models.Obs(y,
                       np.eye(2) * 0.5) for y in [
                           np.array([0, 0]),
                           np.array([a, 0]),
                       ]
        ]

        tracker.register_scan(obs_list)

        obs_list = [
            models.Obs(y,
                       np.eye(2) * 0.5) for y in [
                           np.array([-1, 0]),
                           np.array([x1, np.sqrt(2 - x1**2)]),
                           np.array([x2, np.sqrt(4 - x2**2)]),
                       ]
        ]

        expected = np.array([1.0, 9.0, 2.0, 2.5, 4.0, 3.0])
        actual = np.array([
            dy @ np.linalg.inv(S) @ dy for dy, S in [
                trk.model.residual(obs) for obs in obs_list
                for trk in tracker.trk_list
            ]
        ])
        np.testing.assert_almost_equal(actual, expected)

        tracker.register_scan(obs_list)

        expected = np.array([
            6.47e-5,
            5.04e-5,
            3.06e-5,
            1.44e-5,
            1.82e-5,
            1.11e-5,
            8.60e-6,
            6.70e-6,
            4.10e-6,
            2.40e-6,
        ])
        actual = tracker.hyp_price_list
        np.testing.assert_almost_equal(np.sort(actual), np.sort(expected))