param.requires_grad = False for param in albedoDecoders[n].parameters(): param.requires_grad = False for param in normalDecoders[n].parameters(): param.requires_grad = False for param in roughDecoders[n].parameters(): param.requires_grad = False for param in depthDecoders[n].parameters(): param.requires_grad = False if opt.isLight or (opt.level == 2 and n == 0): # Light network lightEncoders.append( models.encoderLight(cascadeLevel=n, SGNum=opt.SGNum).eval()) axisDecoders.append( models.decoderLight(mode=0, SGNum=opt.SGNum).eval()) lambDecoders.append( models.decoderLight(mode=1, SGNum=opt.SGNum).eval()) weightDecoders.append( models.decoderLight(mode=2, SGNum=opt.SGNum).eval()) lightEncoders[n].load_state_dict( torch.load('{0}/lightEncoder{1}_{2}.pth'.format( experimentsLight[n], n, nepochsLight[n] - 1)).state_dict()) axisDecoders[n].load_state_dict( torch.load('{0}/axisDecoder{1}_{2}.pth'.format( experimentsLight[n], n, nepochsLight[n] - 1)).state_dict()) lambDecoders[n].load_state_dict( torch.load('{0}/lambDecoder{1}_{2}.pth'.format( experimentsLight[n], n, nepochsLight[n] - 1)).state_dict()) weightDecoders[n].load_state_dict(
# Initial Network encoder = models.encoder0(cascadeLevel = 0 ) albedoDecoder = models.decoder0(mode=0 ) normalDecoder = models.decoder0(mode=1 ) roughDecoder = models.decoder0(mode=2 ) depthDecoder = models.decoder0(mode=4 ) encoder1 = models.encoder0(cascadeLevel = 1 ) albedoDecoder1 = models.decoder0(mode=0 ) normalDecoder1 = models.decoder0(mode=1 ) roughDecoder1 = models.decoder0(mode=2 ) depthDecoder1 = models.decoder0(mode=4 ) lightEncoder = models.encoderLight(cascadeLevel = 0, SGNum = opt.SGNum ) axisDecoder = models.decoderLight(mode=0, SGNum = opt.SGNum ) lambDecoder = models.decoderLight(mode = 1, SGNum = opt.SGNum ) weightDecoder = models.decoderLight(mode = 2, SGNum = opt.SGNum ) renderLayer = models.renderingLayer(isCuda = opt.cuda, imWidth=opt.envCol, imHeight=opt.envRow, envWidth = opt.envWidth, envHeight = opt.envHeight) output2env = models.output2env(isCuda = opt.cuda, envWidth = opt.envWidth, envHeight = opt.envHeight, SGNum = opt.SGNum ) #################################################################### ######################################### encoder.load_state_dict( torch.load('{0}/encoder{1}_{2}.pth'.format(opt.experimentBRDF0, 0,