def builder(inputs=None): return models.dense_classifier(builder_dims, inputs=inputs, act_fn=activation_func, optimizer=builder_opt, epoch=True)
builder_opt = tf.train.AdagradOptimizer(learning_rate) builder_dims = [784, 100, 10] # ------------------------------------------------------------------------- # # Dataset instantiation dataset = datasets.load_mnist() train_set = dataset.cut(0, 50000, 50000).shuffle().cut(0, 50000, batch_size) test_set = dataset.cut(50000, 60000, 10000) # Model instantiation graph = tf.Graph() with graph.as_default(): model = models.dense_classifier(builder_dims, inputs=None, act_fn=activation_func, optimizer=builder_opt, epoch=True) # Establish connections with workers sockets = [] for worker_HOST in worker_HOSTS: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(worker_HOST) sockets.append(s) # Testing + Training with graph.as_default(): sess = tf.Session(graph=graph) with sess.as_default():