示例#1
0
def get_indicators(identifiers, data=None, usagedata=None):
    ind = {}
    ind_ref = {}
    # Get the necessary data if we did not get any
    if not data:
        data = get_indicator_data(identifiers)
    if not usagedata:
        usagedata = get_usage_data(identifiers)
    # Organize the citations with a running index (the citation
    # data is already ordered from most to least cited)
    citations = [(i + 1, p.citation_num) for i, p in enumerate(data)]
    # First the Hirsch index
    ind['h'] = max([x[0] for x in citations if x[1] >= x[0]] or [0])
    # Next the g index
    ind['g'] = max([i for (c, i) in zip(list(np.cumsum([x[1] for
                    x in citations], axis=0)), [x[0] for x in citations]) if
                    i**2 <= c] or [0])
    # The number of paper with 10 or more citations (i10)
    ind['i10'] = len([x for x in citations if x[1] >= 10])
    # The number of paper with 100 or more citations (i100)
    ind['i100'] = len([x for x in citations if x[1] >= 100])
    # The m index is the g index divided by the range of publication years
    yrange = datetime.now().year - \
        min([int(p.bibcode[:4]) for p in usagedata]) + 1
    ind['m'] = float(ind['h']) / float(yrange)
    # The read10 index is calculated from current reads for papers published
    # in the last 10 years, normalized by number of authors
    year = datetime.now().year
    Nentries = year - 1996 + 1
    ind['read10'] = sum([float(p.reads[-2]) / float(p.author_num)
                         for p in usagedata if
                         int(p.bibcode[:4]) > year - 10 and p.reads and
                         len(p.reads) == Nentries])
    # Now all the values for the refereed publications
    citations = [(i + 1, n) for i, n in enumerate([p.citation_num for p in
                                                   data if p.refereed])]
    # First the Hirsch index
    ind_ref['h'] = max([x[0] for x in citations if x[1] >= x[0]] or [0])
    # Next the g index
    ind_ref['g'] = max([i for (c, i) in zip(list(np.cumsum(
        [x[1] for x in citations], axis=0)), [x[0] for x in citations]) if
        i**2 <= c] or [0])
    # The number of paper with 10 or more citations (i10)
    ind_ref['i10'] = len([x for x in citations if x[1] >= 10])
    # The number of paper with 100 or more citations (i100)
    ind_ref['i100'] = len([x for x in citations if x[1] >= 100])
    # The m index is the g index divided by the range of publication years
    yrange_ref = datetime.now().year - \
        min([int(p.bibcode[:4]) for p in usagedata]) + 1
    ind_ref['m'] = float(ind_ref['h']) / float(yrange_ref)
    # The read10 index is calculated from current reads for papers published
    # in the last 10 years, normalized by number of authors
    year = datetime.now().year
    Nentries = year - 1996 + 1
    ind_ref['read10'] = sum([float(p.reads[-1]) / float(p.author_num)
                             for p in usagedata if p.refereed and
                             int(p.bibcode[:4]) > year - 10 and
                             p.reads and len(p.reads) == Nentries])
    # Send results back
    return ind, ind_ref
 def test_get_indicator_data(self):
     '''Test getting indicator data'''
     from models import get_indicator_data
     data = get_indicator_data(testset)
     # The most important thing here is to test that it is a list
     # of MetricsModel instances
     self.assertEqual(isinstance(data, list), True)
     self.assertTrue(False not in
                     [x.__class__.__name__ == 'MetricsModel' for x in data])
 def test_get_indicator_data(self):
     '''Test getting indicator data'''
     from models import get_indicator_data
     data = get_indicator_data(testset)
     # The most important thing here is to test that it is a list
     # of MetricsModel instances
     self.assertEqual(isinstance(data, list), True)
     self.assertTrue(
         False not in [x.__class__.__name__ == 'MetricsModel' for
                       x in data])
示例#4
0
def get_indicators(identifiers, data=None, usagedata=None):
    ind = {}
    ind_ref = {}
    # Get the necessary data if we did not get any
    if not data:
        data = get_indicator_data(identifiers)
    if not usagedata:
        usagedata = get_usage_data(identifiers)
    # Organize the citations with a running index (the citation
    # data is already ordered from most to least cited)
    citations = [(i + 1, p.citation_num) for i, p in enumerate(data)]
    # First the Hirsch index
    ind['h'] = max([x[0] for x in citations if x[1] >= x[0]] or [0])
    # Next the g index
    ind['g'] = max([
        i for (c, i) in zip(list(np.cumsum([x[1] for x in citations], axis=0)),
                            [x[0] for x in citations]) if i**2 <= c
    ] or [0])
    # The number of paper with 10 or more citations (i10)
    ind['i10'] = len([x for x in citations if x[1] >= 10])
    # The number of paper with 100 or more citations (i100)
    ind['i100'] = len([x for x in citations if x[1] >= 100])
    # The m index is the g index divided by the range of publication years
    yrange = datetime.now().year - \
        min([int(p.bibcode[:4]) for p in usagedata]) + 1
    ind['m'] = float(ind['h']) / float(yrange)
    # The read10 index is calculated from current reads for papers published
    # in the last 10 years, normalized by number of authors
    year = datetime.now().year
    Nentries = year - 1996 + 1
    ind['read10'] = sum([
        float(p.reads[-2]) / float(p.author_num) for p in usagedata
        if int(p.bibcode[:4]) > year -
        10 and p.reads and len(p.reads) == Nentries
    ])
    # Now all the values for the refereed publications
    citations = [
        (i + 1, n)
        for i, n in enumerate([p.citation_num for p in data if p.refereed])
    ]
    # First the Hirsch index
    ind_ref['h'] = max([x[0] for x in citations if x[1] >= x[0]] or [0])
    # Next the g index
    ind_ref['g'] = max([
        i for (c, i) in zip(list(np.cumsum([x[1] for x in citations], axis=0)),
                            [x[0] for x in citations]) if i**2 <= c
    ] or [0])
    # The number of paper with 10 or more citations (i10)
    ind_ref['i10'] = len([x for x in citations if x[1] >= 10])
    # The number of paper with 100 or more citations (i100)
    ind_ref['i100'] = len([x for x in citations if x[1] >= 100])
    # The m index is the g index divided by the range of publication years
    yrange_ref = datetime.now().year - \
        min([int(p.bibcode[:4]) for p in usagedata]) + 1
    ind_ref['m'] = float(ind_ref['h']) / float(yrange_ref)
    # The read10 index is calculated from current reads for papers published
    # in the last 10 years, normalized by number of authors
    year = datetime.now().year
    Nentries = year - 1996 + 1
    ind_ref['read10'] = sum([
        float(p.reads[-1]) / float(p.author_num) for p in usagedata
        if p.refereed and int(p.bibcode[:4]) > year -
        10 and p.reads and len(p.reads) == Nentries
    ])
    # Send results back
    return ind, ind_ref