示例#1
0
def evaluate():
    label_map = du.get_label_map(os.path.join(c.data_kaggle, 'train.csv'))
    normdict = {'p1090': (10, 90), 'pMS': None}
    for pstr in ['pMS', 'p1090']:
        segment_fn = m.get_segmenter_function(os.path.join(
            c.params_dir, 'fcn_v2_' + pstr),
                                              c.fcn_img_size,
                                              ensemble=True,
                                              version=2)
        dsets = []
        for s in range(*c.fcn_eval_cases):
            dset = du.CNN_Dataset(s)
            if len(dset.slices_ver) < 5:
                pass
            dset.segment(
                segment_fn, lambda x: du.segmenter_data_transform(
                    x, rotate=None, normalize_pctwise=normdict[pstr]))
            sys_vol, dias_vol = du.calculate_areas(dset,
                                                   dset.counts,
                                                   dset.sys_time,
                                                   dset.dias_time,
                                                   end_slice_include=False)
            sys_vol = max(sys_vol, 0.15 * dias_vol)
            dset.sys_vol, dset.dias_vol = (sys_vol, dias_vol)
            print '#{} {} {}'.format(dset.name, sys_vol, dias_vol)
            dsets.append(dset)
            dset.unload()
        #vector_map = { int(ds.name):([1, ds.sys_vol], [1, ds.dias_vol]) for ds in dsets }
        #w_func = du.optimize_w(vector_map, label_map, 2, max_w = 8, above_below=True)
        du.write_outputs(dsets, c.output_dir, pstr)
示例#2
0
def evaluate():
    ch4_seg_fn = m.get_segmenter_function(os.path.join(c.params_dir, 'ch4seg_v2'),
            c.fcn_img_size, ensemble=True, version=2)
    label_map = du.get_label_map(os.path.join(c.data_kaggle, 'train.csv'))

    # do 4ch segmentation and calculate volume as if it were circular
    calc_map = {}
    print 'segmenting 4ch images and calculating volumes'
    for s in xrange(*c.ch4_eval_cases):
        if s % 10 == 0:
            print 'processing example {}'.format(s)
        dset = du.CNN_Dataset(s, load_sax_images=False)
        if dset.ch4_images is not None:
            dset.segment_ch4(ch4_seg_fn, lambda x: du.segmenter_data_transform(x, rotate=None))
            ch4counts = [np.count_nonzero(ch4s_) for ch4s_ in dset.ch4seg] # count for each time
            if sum(ch4counts) > 0:
                volumes = np.empty(dset.ch4seg.shape[0])
                for t in xrange(dset.ch4seg.shape[0]):
                    diams = np.array([np.count_nonzero(dset.ch4seg[t,:,i])
                        for i in xrange(dset.ch4seg[t].shape[0])])
                    volumes[t] = sum((dset.ch4_line_mult**3)*np.pi*d**2/4 for d in diams)/1000.
                calc_map[s] = min(volumes), max(volumes) 
    out_lines = ['{},{:.2f},{:.2f}\n'.format(s, calc[0], calc[1])
            for s,calc in calc_map.iteritems()]
    with open(os.path.join(c.output_dir, 'ch4_volumes_map.csv'), 'w') as wr:
        wr.writelines(out_lines)

    '''
示例#3
0
def evaluate():
    ch4_seg_fn = m.get_segmenter_function(os.path.join(c.params_dir,
                                                       'ch4seg_v2'),
                                          c.fcn_img_size,
                                          ensemble=True,
                                          version=2)
    label_map = du.get_label_map(os.path.join(c.data_kaggle, 'train.csv'))

    # do 4ch segmentation and calculate volume as if it were circular
    calc_map = {}
    print 'segmenting 4ch images and calculating volumes'
    for s in xrange(*c.ch4_eval_cases):
        if s % 10 == 0:
            print 'processing example {}'.format(s)
        dset = du.CNN_Dataset(s, load_sax_images=False)
        if dset.ch4_images is not None:
            dset.segment_ch4(
                ch4_seg_fn,
                lambda x: du.segmenter_data_transform(x, rotate=None))
            ch4counts = [np.count_nonzero(ch4s_)
                         for ch4s_ in dset.ch4seg]  # count for each time
            if sum(ch4counts) > 0:
                volumes = np.empty(dset.ch4seg.shape[0])
                for t in xrange(dset.ch4seg.shape[0]):
                    diams = np.array([
                        np.count_nonzero(dset.ch4seg[t, :, i])
                        for i in xrange(dset.ch4seg[t].shape[0])
                    ])
                    volumes[t] = sum((dset.ch4_line_mult**3) * np.pi * d**2 / 4
                                     for d in diams) / 1000.
                calc_map[s] = min(volumes), max(volumes)
    out_lines = [
        '{},{:.2f},{:.2f}\n'.format(s, calc[0], calc[1])
        for s, calc in calc_map.iteritems()
    ]
    with open(os.path.join(c.output_dir, 'ch4_volumes_map.csv'), 'w') as wr:
        wr.writelines(out_lines)
    '''
tag = c.tag
vvv = "p2090_size{}_ss{}_noc{}_tag{}".format(c.fcn_img_size, ss, noc, tag)
res_file = 'v{}_'.format(version) + vvv + '_2norm'
train_CV = False
pct_norm = (10, 90)
pct_norm2 = (20, 99)
generate_contours = 0
if noc == 'auto':
    generate_contours = 0

np.random.seed(2345)
#compare with 1 (10,95)
if train_CV:
    segment_fn = m.get_segmenter_function(c.params_dir,
                                          c.fcn_img_size,
                                          NCV=5,
                                          version=version,
                                          param_file_key=vvv)
else:
    segment_fn = m.get_segmenter_function(
        c.params_dir + '/fcn_v{}_{}_f5.npz'.format(version, vvv),
        c.fcn_img_size,
        NCV=False,
        version=version)

label_map = du.get_label_map(os.path.join(c.data_kaggle, 'train.csv'))
dsets = []

for s in range(M, N + 1):
    start = time.time()
    dset = du.CNN_Dataset(s)
ss = c.para_ss
noc = c.no_contour_type
tag = c.tag
vvv = "p2090_size{}_ss{}_noc{}_tag{}".format(c.fcn_img_size, ss, noc, tag)
res_file = "v{}_".format(version) + vvv + "_2norm"
train_CV = False
pct_norm = (10, 90)
pct_norm2 = (20, 99)
generate_contours = 0
if noc == "auto":
    generate_contours = 0

np.random.seed(2345)
# compare with 1 (10,95)
if train_CV:
    segment_fn = m.get_segmenter_function(c.params_dir, c.fcn_img_size, NCV=5, version=version, param_file_key=vvv)
else:
    segment_fn = m.get_segmenter_function(
        c.params_dir + "/fcn_v{}_{}_f5.npz".format(version, vvv), c.fcn_img_size, NCV=False, version=version
    )

label_map = du.get_label_map(os.path.join(c.data_kaggle, "train.csv"))
dsets = []

for s in range(M, N + 1):
    start = time.time()
    dset = du.CNN_Dataset(s)
    if len(dset.slices_ver) < 3:
        pass
    dset.segment(
        segment_fn,