def setUp(self): # Need this for Resource Auth App.get_config()['SECRET_KEY'] = 'mysecrettestkey' self.db = DB # do once per test load_data('%s/data/fixtures.json' % TEST_DIR)
def train(self): train_data, test_data, n_labels = models.load_data(self.args) n_epochs = self.args['training']['n_epochs'] batch_size = self.args['training']['batch_size'] d_steps = self.args['training']['d_steps'] log_interval = self.args['training']['log_interval'] self.writer = torch.utils.tensorboard.SummaryWriter( log_dir=self.log_dir + '/run/') self.fixed_z = self.z_dist.sample((64, )) self.fixed_y = self.y_dist.sample((64, )) self.z_start = self.z_dist.sample((32, )) self.z_end = self.z_dist.sample((32, )) self.z_inter_list = metrics.slerp(self.z_start, self.z_end, 14) for eidx in trange(n_epochs, leave=True, desc='Epoch'): for iidx, real_batch in enumerate(tqdm(train_data)): noise_batch = self.z_dist.sample((batch_size, )) loss_d = self._train_d(real_batch=real_batch, noise_batch=noise_batch) self.writer.add_scalar('Loss/%d/d' % eidx, loss_d, global_step=iidx) if iidx % d_steps == 0: # train G if len(real_batch) == 2: label_batch = real_batch[1] else: label_batch = None loss_g = self._train_g(noise_batch=noise_batch, label_batch=label_batch) self.writer.add_scalar('Loss/%d/g' % eidx, loss_g, global_step=iidx) if eidx % log_interval == 0: self._log(eidx, test_data)
def load_and_report(): # fetching the current time as name name = names_of_fig() # load Pricing test data all_contracts, p_sorted = load_data() # List contracts print(f"Showing all_contracts..........\n{all_contracts.tail(10)}\n") print(f"Showing p_sorted......\n{p_sorted.tail(10)}\n") # output from potential_pair ret, list_sect = potential_pairs(all_contracts, p_sorted) print(f"showing list_sect.......\n{list_sect}\n") print(f"showing ret........\n{ret.tail(10)}\n") # show the results of in sample testing ret.iloc[0] = 1 ret.index = all_contracts.index plt.figure(figsize=(15, 7)) plt.xlabel('Trade Date') plt.grid(True) plt.plot(ret) plt.legend(list(ret.columns)) plt.show() plt.savefig(os.path.join("charts/sample test", "sample test " + name)) # calculate the performance perf = ret.calc_stats() perf.display() perf.to_csv(sep=',', path="train_perfer.csv") # plot the maxinum drawndown of each pair ffn_ret = ffn.to_drawdown_series(ret) plt.figure(figsize=(15, 7)) plt.grid(True) plt.plot(ffn_ret) plt.legend(list(ffn_ret.columns)) plt.show() plt.savefig(os.path.join("charts/ffn drawdown", "ffn max drawdown " + name)) # In sample back testing of portfolio port = ret.mean(axis=1) plt.figure(figsize=(15, 7)) plt.grid(True) plt.plot(port) plt.show() #plt.legend(list(port.columns)) plt.savefig(os.path.join("charts/testing of portfolio", "portfolio test " + name)) perf = port.calc_stats() print(f"\n\nPrinting perf stats.......\n{perf.stats}\n") # In sample back testing of portfolio maxinum drawndown ffn_port = ffn.to_drawdown_series(port) plt.figure(figsize=(15, 7)) plt.grid(True) plt.plot(ffn_port) #plt.legend(list(ffn_port.columns)) plt.savefig(os.path.join("charts/back testing of portfolio maxinum drawndown", "maxinum drawndown " + name)) #################### ##sample back testing###### ##################### test_ret, testing_data = sample_backtest(list_sect) print(f"\n\n\nShowing sample back testing- testing data tail.......\n\n{testing_data.tail(3)}\n") test_ret.iloc[0] = 1 print(f"\n\nShowing sample backtesting test_ret tail.......\n\n{test_ret.tail(3)}") print(f"\n\nshowing test_ret shape......\n\n{test_ret.shape})") print(f"\n\n\nshowing test_ret index........\n\n{test_ret.index}") # plotting test_ret sample back testing plt.plot(test_ret) plt.legend(list(test_ret.columns)) plt.savefig(os.path.join("charts/sample Backtesting/test_ret", "test_ret " + name)) # Out sample back testing of portfolio port = test_ret.mean(axis=1) plt.figure(figsize=(15, 7)) plt.grid(True) plt.plot(port) # plt.legend(list(port.columns)) plt.savefig(os.path.join("charts/sample Backtesting/portfolio", "backtesting portfolio " + name)) perf = port.calc_stats() print(perf.stats) ffn_backtest_sample = ffn.to_drawdown_series(port) plt.figure(figsize=(15, 7)) plt.grid(True) plt.plot(ffn_backtest_sample) # plt.legend(list(ffn_backtest_sample.columns)) plt.savefig(os.path.join("charts/sample Backtesting/ffn_drawdown_port", "drwadown_port " + name)) return None
#parser.add_argument('patch_shape', type=int, # help='The size of the input patch window.'), #parser.add_argument('label_patch_shape', type=int, # help='The size of the predicted patch window.'), #parser.add_argument('num_channels', type=int, # help='Number of channels in the dataset.'), #args = parser.parse_args() #path_testset = self.testset path_testset = '/home/local/USHERBROOKE/havm2701/data/DBFrames' batch_size = 100 dataset = '/home/local/USHERBROOKE/havm2701/git.repos/Deep_VAMP/theano/mnist.pkl.gz' datasets = models.load_data(dataset) pdb.set_trace() train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] pdb.set_trace() #train = VAMP(start=0,stop=10000,image_resize=[128,64],toronto_prepro=True) #valid = VAMP(start=10000,stop=12000,image_resize=[128,64],toronto_prepro=True) #valid = valid.get_reshaped_images() #train = train.get_reshaped_images() dataset ={} #train.y=np.argmax(train.y,axis=1) #train.y = np.asarray(train.y,dtype=np.32) #valid.y=np.argmax(valid.y,axis=1)
import numpy as np import PIL.Image as pil import matplotlib.pyplot as plt import random as rng import cv2 as cv from models import load_data, view_image print(__doc__) data_dir = 'data/' train_data, train_labels, sub = 'train_images.pkl', 'train_labels.csv', 'test_images.pkl' # Load the data into variables and normalize data X, y, sub = load_data(data_dir, train_data, train_labels, sub) rng.seed(12345) # Test some opencv bs to see if it works def thresh_callback(val): threshold = val canny_output = cv.Canny(src_gray, threshold, threshold*2) _, contours, hierarchy = cv.findContours(canny_output, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # Bounding rectangles contours_poly = [None]*len(contours) boundRect = [None]*len(contours) centers = [None]*len(contours) radius = [None]*len(contours)
def get_wheel_sets(): return load_data()
def setUp(self): self.db = DB # do once per test load_data('%s/data/minimal.json' % TEST_DIR)
''' @author: viet Prototyping the thinning pipeline, might not use it tho ''' from models import load_data, view_image from models.img_processing import threshold_background import numpy as np import cv2 as cv from PIL import Image train_data, train_labels, sub_data = load_data('data/', 'train_images.pkl', 'train_labels.csv', 'test_images.pkl') train_labels = train_labels['Category'].values # Get labels train_data, sub_data = (train_data)[:, :, :, None], (sub_data)[:, :, :, None] train_data, sub_data = np.transpose(train_data, (0, 3, 1, 2)), np.transpose( sub_data, (0, 3, 1, 2)) def convert_to_3_channels(img_array): 'Literally does what the name says it does' new_array = [] for i in range(len(img_array)): e = img_array[i][0] new_image = [e, e, e] # 3 channels new_array.append(new_image) return np.asarray(new_array)