def load_agencies(request, indexfile=""): #Open summary excelfile wbin = xlrd.open_workbook(indexfile) #Agencies sh_source = wbin.sheet_by_name(u'Agencies') for rownum in range(1,sh_source.nrows): row = sh_source.row_values(rownum) shortname = row[0] fullname = row[1] parentname = row[2] website = row[3] scraped = True newagency = Agency(shortname=shortname, name=fullname, parentname=parentname, website=website, notes="", scraped=scraped) newagency.save() return HttpResponse("Agency details loaded from file.")
def load_agencies(request, indexfile=""): #Open summary excelfile wbin = xlrd.open_workbook(indexfile) #Agencies sh_source = wbin.sheet_by_name(u'Agencies') for rownum in range(1, sh_source.nrows): row = sh_source.row_values(rownum) shortname = row[0] fullname = row[1] parentname = row[2] website = row[3] scraped = True newagency = Agency(shortname=shortname, name=fullname, parentname=parentname, website=website, notes="", scraped=scraped) newagency.save() return HttpResponse("Agency details loaded from file.")
def load_indicator_spreadsheet(request, indexfile=""): #Open summary excelfile wbin = xlrd.open_workbook(indexfile) #Agencies sh_source = wbin.sheet_by_name(u'Agencies') for rownum in range(1, sh_source.nrows): row = sh_source.row_values(rownum) shortname = row[0] fullname = row[1] parentname = row[2] website = row[3] scraped = True newagency = Agency(shortname=shortname, name=fullname, parentname=parentname, website=website, notes="", scraped=scraped) newagency.save() #Datasources sh_source = wbin.sheet_by_name(u'Datasources Used') for rownum in range(1, sh_source.nrows): row = sh_source.row_values(rownum) shortname = row[0] fullname = row[1] sourceagency = row[2] sourcefile = row[5] sourceurl = row[7] #FIXIT: should be the times when scrapers were run, not the date the file #was uploaded todaysdate = datetime.now() newsource = Datasource(shortname=shortname, name=fullname, notes="", url=sourceurl, dateadded=todaysdate, datechecked=todaysdate, scraper=True, localfile=sourcefile) newsource.save() sh_source = wbin.sheet_by_name(u'Suggested Sources') for rownum in range(1, sh_source.nrows): row = sh_source.row_values(rownum) shortname = row[0] fullname = row[1] sourceagency = row[2] sourceurl = row[3] newsource = Datasource(shortname=shortname, name=fullname, notes="", url=sourceurl, dateadded=todaysdate, datechecked=todaysdate, scraper=False, localfile="") newsource.save() #Indicators indicators = {} sh_ind = wbin.sheet_by_name(u'Indicators Needed') for rownum in range(1, sh_ind.nrows): row = sh_ind.row_values(rownum) indcode = row[0] indname = row[1] indicators[indcode] = indname ## newindicator = Indicator() ## newindicator.save() #Indicators in sources found = {} sh_found = wbin.sheet_by_name(u'Indicators Found') for rownum in range(1, sh_found.nrows): row = sh_found.row_values(rownum) sourcecode = row[0] indcode = row[1] csvheading = row[4] #Only process indicators that we have data for if not (csvheading == ""): if not (found.has_key(sourcecode)): found[sourcecode] = {} found[sourcecode][csvheading] = indcode ## newfound = foundIndicator(indicator=, datasource=, ## csvfile=, csvindname=, ## datasourceindname=, ## datasourcedesc=, notes=) ## newfound.save() return HttpResponse("Indicator details loaded from file.")
def load_indicator_spreadsheet(request, indexfile=""): #Open summary excelfile wbin = xlrd.open_workbook(indexfile) #Agencies sh_source = wbin.sheet_by_name(u'Agencies') for rownum in range(1,sh_source.nrows): row = sh_source.row_values(rownum) shortname = row[0] fullname = row[1] parentname = row[2] website = row[3] scraped = True newagency = Agency(shortname=shortname, name=fullname, parentname=parentname, website=website, notes="", scraped=scraped) newagency.save() #Datasources sh_source = wbin.sheet_by_name(u'Datasources Used') for rownum in range(1,sh_source.nrows): row = sh_source.row_values(rownum) shortname = row[0] fullname = row[1] sourceagency = row[2] sourcefile = row[5] sourceurl = row[7] #FIXIT: should be the times when scrapers were run, not the date the file #was uploaded todaysdate = datetime.now() newsource = Datasource(shortname=shortname, name=fullname, notes="", url=sourceurl, dateadded=todaysdate, datechecked=todaysdate, scraper=True, localfile=sourcefile) newsource.save() sh_source = wbin.sheet_by_name(u'Suggested Sources') for rownum in range(1,sh_source.nrows): row = sh_source.row_values(rownum) shortname = row[0] fullname = row[1] sourceagency = row[2] sourceurl = row[3] newsource = Datasource(shortname=shortname, name=fullname, notes="", url=sourceurl, dateadded=todaysdate, datechecked=todaysdate, scraper=False, localfile="") newsource.save() #Indicators indicators = {} sh_ind = wbin.sheet_by_name(u'Indicators Needed') for rownum in range(1,sh_ind.nrows): row = sh_ind.row_values(rownum) indcode = row[0] indname = row[1] indicators[indcode] = indname ## newindicator = Indicator() ## newindicator.save() #Indicators in sources found = {} sh_found = wbin.sheet_by_name(u'Indicators Found') for rownum in range(1,sh_found.nrows): row = sh_found.row_values(rownum) sourcecode = row[0] indcode = row[1] csvheading = row[4] #Only process indicators that we have data for if not(csvheading == ""): if not(found.has_key(sourcecode)): found[sourcecode] = {} found[sourcecode][csvheading] = indcode ## newfound = foundIndicator(indicator=, datasource=, ## csvfile=, csvindname=, ## datasourceindname=, ## datasourcedesc=, notes=) ## newfound.save() return HttpResponse("Indicator details loaded from file.")