from models import LeNet, AlexNet, VGG13, ResNet34, TestNet from keras.models import load_model from keras import optimizers from prepare_data import load_data from utils import CLASS_NUM, IMG_SIZE import os train_X, test_X, train_y, test_y = load_data(class_num=CLASS_NUM, img_size=IMG_SIZE) if not os.path.exists('autogta.h5'): autogta = AlexNet(train_X[0].shape) autogta.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) autogta.fit(x=train_X, y=train_y, epochs=10, batch_size=16) autogta.save('autogta.h5') else: autogta = load_model('autogta.h5') loss, accu = autogta.evaluate(x=test_X, y=test_y) print('loss\t{}\naccuracy\t{}'.format(loss, accu))
import tensorflow.keras as K from models import AlexNet model = AlexNet("fusion", 8, (160, 120, 4)).get_model() model.compile(optimizer="sgd", loss="categorical_crossentropy", metrics=["accuracy"]) K.utils.plot_model(model, to_file="asdf.png")