def __initialize_models(self, feat, labels=None): self.data_size = feat.shape[0] self.feat_dim = feat.shape[1] if self.verbose: print('Pretraining Cluster Centers by KMeans') self.kmeans = KMeans(n_clusters=self.n_clusters, n_init=20, n_jobs=self.max_jobs, verbose=False) self.last_pred = self.kmeans.fit_predict(feat) if labels is not None: tmp_acc = cluster_acc(labels, self.last_pred) if self.verbose: print('KMeans acc is {}'.format(tmp_acc)) if self.verbose: print('Building Cluster Layer') # self.cluster_layer = ClusterNet(torch.Tensor(self.kmeans.cluster_centers_.astype(np.float32))) self.cluster_layer = ClusterNet(torch.from_numpy(self.kmeans.cluster_centers_.astype(np.float32))) if self.use_cuda: self.cluster_layer.cuda() if self.verbose: print('Building Optimizer') self.optimizer = optim.Adam(self.cluster_layer.parameters(), lr=self.lr)
class Text_IDEC(object): def __init__(self, root_dir, batch_size=256, n_clusters=4, fd_hidden_dim=10, layer_norm=True, lr=0.001, direct_update=False, maxiter=2e4, update_interval=140, tol=0.001, gamma=0.1, fine_tune_infersent=False, use_vat=False, use_tensorboard=False, semi_supervised=False, split_sents=False, id=0, verbose=True): # model's settings self.root_dir = root_dir self.batch_size = batch_size self.fd_hidden_dim = fd_hidden_dim self.n_clusters = n_clusters self.layer_norm = layer_norm self.use_vat = use_vat self.semi_supervised = semi_supervised self.lr = lr self.direct_update = direct_update self.maxiter = maxiter self.update_interval = update_interval self.tol = tol self.gamma = gamma self.fine_tune_infersent = fine_tune_infersent self.verbose = verbose self.use_tensorboard = use_tensorboard self.id = id self.use_cuda = torch.cuda.is_available() self.split_sents = split_sents # data loader self.corpus_loader = Corpus_Loader(self.root_dir, layer_norm=self.layer_norm, verbose=self.verbose, use_cuda=self.use_cuda, semi_supervised=self.semi_supervised, split_sents=self.split_sents) # model's components self.kmeans = None # self.fd_ae = extract_sdae_text(dim=fd_hidden_dim) self.fd_ae = extract_sdae_model(input_dim=cfg.INPUT_DIM, hidden_dims=cfg.HIDDEN_DIMS) self.cluster_layer = None self.ae_criteron = nn.MSELoss() self.cluster_criteron = F.binary_cross_entropy self.optimizer = None # model's state self.current_p = None self.current_q = None self.current_pred_labels = None self.past_pred_labels = None self.current_cluster_acc = None self.current_cluster_nmi = None self.current_cluster_ari = None # model's logger self.logger_tensorboard = None # initialize model's parameters and update current state self.initialize_model() self.initialize_tensorboard() def initialize_tensorboard(self): outputdir = get_output_dir(self.root_dir) loggin_dir = os.path.join(outputdir, 'runs', 'clustering') if not os.path.exists(loggin_dir): os.makedirs(loggin_dir) self.logger_tensorboard = tensorboard_logger.Logger(os.path.join(loggin_dir, '{}'.format(self.id))) def initialize_model(self): if self.verbose: print('Loading pretrainded feedforward autoencoder') self.load_pretrained_fd_autoencoder() if self.verbose: print('Kmeans by hidden features') self.initialize_kmeans() if self.verbose: print('Kmeans cluster acc is {}'.format(self.current_cluster_acc)) print('Kmeans cluster mni is {}'.format(self.current_cluster_nmi)) print('Kmeans cluster ari is {}'.format(self.current_cluster_ari)) print('Initialzing cluster layer by Kmeans centers') self.initialize_cluster_layer() if self.verbose: print('Initializing Adam optimzer, learning rate is {}'.format(self.lr)) self.initialize_optimizer() if self.verbose: print('Updating target distribution') self.update_target_distribution() def load_pretrained_fd_autoencoder(self): """ load pretrained stack denoise autoencoder """ outputdir = get_output_dir(self.root_dir) ########################## outputdir = self.root_dir ########################## net_filename = os.path.join(outputdir, cfg.PRETRAINED_FAE_FILENAME) checkpoint = torch.load(net_filename) # there some problems when loading cuda pretrained models self.fd_ae.load_state_dict(checkpoint['state_dict']) if self.use_cuda: self.fd_ae.cuda() def initialize_optimizer(self): params = [ {'params': self.fd_ae.parameters()}, {'params': self.cluster_layer.parameters()} ] if self.fine_tune_infersent: params.append({'params': self.corpus_loader.infersent.parameters(), 'lr': 0.001 * self.lr}) self.optimizer = optim.Adam(params, lr=self.lr) def initialize_kmeans(self): features = self.__get_initial_hidden_features() kmeans = KMeans(n_clusters=self.n_clusters, n_init=20) self.current_pred_labels = kmeans.fit_predict(features) self.update_cluster_acc() self.kmeans = kmeans def __get_initial_hidden_features(self): batch_size = self.batch_size features_numpy = self.corpus_loader.get_fixed_features() data_size = self.corpus_loader.data_size hidden_feat = np.zeros((data_size, self.fd_hidden_dim)) for index in range(0, data_size, batch_size): data_batch = features_numpy[index: index+batch_size] data_batch = Variable(torch.Tensor(data_batch)) if self.use_cuda: data_batch = data_batch.cuda() hidden_batch, _ = self.fd_ae(data_batch) hidden_batch = hidden_batch.data.cpu().numpy() hidden_feat[index: index+batch_size] = hidden_batch return hidden_feat ################################################################# def get_current_hidden_features(self): return self.__get_initial_hidden_features() ################################################################# def initialize_cluster_layer(self): self.cluster_layer = ClusterNet(torch.Tensor(self.kmeans.cluster_centers_.astype(np.float32))) if self.use_cuda: self.cluster_layer.cuda() def get_batch_target_distribution(self, batch_id): batch_target_distribution = self.current_p[batch_id] batch_target_distribution = Variable(torch.Tensor(batch_target_distribution)) if self.use_cuda: batch_target_distribution = batch_target_distribution.cuda() return batch_target_distribution def update_target_distribution(self): data_size = self.corpus_loader.data_size all_q = np.zeros((data_size, self.n_clusters)) tmp_size = 0 for current_batch in self.corpus_loader.\ train_data_iter(self.batch_size): id_batch = current_batch[2] if self.fine_tune_infersent: sent_feat = current_batch[3] else: sent_feat = current_batch[0] hidden_feat, _ = self.fd_ae(sent_feat) q_batch = self.cluster_layer(hidden_feat) q_batch = q_batch.cpu().data.numpy() all_q[id_batch] = q_batch tmp_size += len(id_batch) assert tmp_size == data_size all_p = self.target_distribution_numpy(all_q) self.current_p = all_p self.current_q = all_q self.update_pred_labels() self.update_cluster_acc() def update_pred_labels(self): # warning: # When running this function first time, # the value of self.past_pred_labels will be equal to self.current_pred_labels # This function shouldn't be called for successive times. self.past_pred_labels = self.current_pred_labels self.current_pred_labels = np.argmax(self.current_q, axis=1) def update_cluster_acc(self): from sklearn.metrics import normalized_mutual_info_score from sklearn.metrics import adjusted_mutual_info_score self.current_cluster_acc = cluster_acc(np.array(self.corpus_loader.train_labels), self.current_pred_labels) self.current_cluster_nmi = normalized_mutual_info_score(np.array(self.corpus_loader.train_labels), self.current_pred_labels) self.current_cluster_ari = adjusted_mutual_info_score(np.array(self.corpus_loader.train_labels), self.current_pred_labels) @staticmethod def target_distribution_torch(q): p = torch.pow(q, 2) / torch.sum(q, dim=0).unsqueeze(0) p = p / torch.sum(p, dim=1).unsqueeze(1) # p = torch.t(torch.t(p) / torch.sum(p, dim=1)) return Variable(p.data) @staticmethod def target_distribution_numpy(q): p = np.power(q, 2) / np.sum(q, axis=0, keepdims=True) p = p / np.sum(p, axis=1, keepdims=True) return p def vat(self, x_batch, xi=0.1, Ip=1): # virtual adversarial training # forbid x_batch's grad backward x_batch = Variable(x_batch.data) hidden_batch, _ = self.fd_ae(x_batch) q_batch = self.cluster_layer(hidden_batch) q_batch = Variable(q_batch.data) # initialize residue d to normalized random vector d = torch.randn(x_batch.size()) if self.use_cuda: d = d.cuda() d = d / (torch.norm(d, p=2, dim=1, keepdim=True) + 1e-8) # ensure model's parameter to be 0 self.model_zero_grad() for i in range(Ip): d = nn.Parameter(d) tmp_x_batch = x_batch + xi * d tmp_hidden_batch, _ = self.fd_ae(tmp_x_batch) tmp_q_batch = self.cluster_layer(tmp_hidden_batch) tmp_loss = F.binary_cross_entropy(tmp_q_batch, q_batch) tmp_loss.backward() d = d.grad.data d = d / (torch.norm(d, p=2, dim=1, keepdim=True) + 1e-8) self.model_zero_grad() # computing vat loss d = Variable(d) tmp_x_batch = x_batch + xi * d tmp_hidden_batch, _ = self.fd_ae(tmp_x_batch) tmp_q_batch = self.cluster_layer(tmp_hidden_batch) tmp_loss = F.binary_cross_entropy(tmp_q_batch, q_batch) return tmp_loss def whether_convergence(self): delta_label = np.sum(self.past_pred_labels != self.current_pred_labels) / float(len(self.current_pred_labels)) return delta_label < self.tol def model_zero_grad(self): self.cluster_layer.zero_grad() self.fd_ae.zero_grad() if self.fine_tune_infersent: self.corpus_loader.infersent.zero_grad() def clustering(self): if self.semi_supervised: train_data_iter = self.corpus_loader.train_data_iter(self.batch_size, return_variable_features=self.fine_tune_infersent, shuffle=False, infinite=True) constraints_data_iter = self.corpus_loader.constraint_data_iter(self.batch_size, shuffle=True, infinite=True) ite = 0 tmp_ite_cons = 0 while True: if random.random() > 0.95: self.model_zero_grad() feat_batch1, feat_batch2 = constraints_data_iter.next() hidden_batch1, output_feat1 = self.fd_ae(feat_batch1) hidden_batch2, output_feat2 = self.fd_ae(feat_batch2) ae_loss1 = self.ae_criteron(output_feat1, feat_batch1) ae_loss2 = self.ae_criteron(output_feat2, feat_batch2) q_batch1 = self.cluster_layer(hidden_batch1) q_batch2 = self.cluster_layer(hidden_batch2) if random.random() > 0.5: q_batch1, q_batch2 = q_batch2, q_batch1 q_batch2 = Variable(q_batch2.data) k_loss = self.cluster_criteron(q_batch1, q_batch2) loss = 2 * self.gamma * k_loss + ae_loss1 + ae_loss2 if self.use_tensorboard: self.logger_tensorboard.log_value('cons_loss', loss.data[0], tmp_ite_cons) self.logger_tensorboard.log_value('cons_kl_loss', k_loss.data[0], tmp_ite_cons) loss.backward() self.optimizer.step() tmp_ite_cons += 1 else: if ite % self.update_interval == (self.update_interval - 1): self.update_target_distribution() print('Iter {} acc {} nmi {} ari {}'.format(ite, self.current_cluster_acc, self.current_cluster_nmi, self.current_cluster_ari)) if self.use_tensorboard: self.logger_tensorboard.log_value('acc', self.current_cluster_acc, ite) if ite > 0 and self.whether_convergence(): break current_batch = train_data_iter.next() fixed_feat_batch = current_batch[0] id_batch = current_batch[2] if self.fine_tune_infersent: sent_feat_batch = current_batch[3] else: sent_feat_batch = fixed_feat_batch self.model_zero_grad() hidden_batch, output_batch = self.fd_ae(sent_feat_batch) q_batch = self.cluster_layer(hidden_batch) if self.direct_update: p_batch = self.target_distribution_torch(q_batch) else: p_batch = self.get_batch_target_distribution(id_batch) ae_loss = self.ae_criteron(output_batch, fixed_feat_batch) cluster_loss = self.cluster_criteron(q_batch, p_batch) if self.use_vat: vat_loss = self.vat(sent_feat_batch) else: vat_loss = 0 loss = self.gamma * (cluster_loss + vat_loss) + ae_loss if self.use_tensorboard: self.logger_tensorboard.log_value('cluster_loss', cluster_loss.data[0], ite) self.logger_tensorboard.log_value('ae_loss', ae_loss.data[0], ite) if self.use_vat: self.logger_tensorboard.log_value('vat_loss', vat_loss.data[0], ite) self.logger_tensorboard.log_value('loss', loss.data[0], ite) loss.backward() self.optimizer.step() ###################################### ite += 1 if ite >= int(self.maxiter): break ###################################### else: train_data_iter = self.corpus_loader.train_data_iter(self.batch_size, # return_variable_features=self.fine_tune_infersent, shuffle=False, infinite=True) for ite in range(int(self.maxiter)): if ite % self.update_interval == (self.update_interval - 1): self.update_target_distribution() print('Iter {} acc {} nmi {} ari {}'.format(ite, self.current_cluster_acc, self.current_cluster_nmi, self.current_cluster_ari)) if self.use_tensorboard: self.logger_tensorboard.log_value('acc', self.current_cluster_acc, ite) if ite > 0 and self.whether_convergence(): break current_batch = train_data_iter.next() fixed_feat_batch = current_batch[0] id_batch = current_batch[2] if self.fine_tune_infersent: sent_feat_batch = current_batch[3] else: sent_feat_batch = fixed_feat_batch self.model_zero_grad() hidden_batch, output_batch = self.fd_ae(sent_feat_batch) q_batch = self.cluster_layer(hidden_batch) if self.direct_update: p_batch = self.target_distribution_torch(q_batch) else: p_batch = self.get_batch_target_distribution(id_batch) ############################################################# # ae_loss = self.ae_criteron(output_batch, fixed_feat_batch) ae_loss = 0.0 ############################################################# cluster_loss = self.cluster_criteron(q_batch, p_batch) if self.use_vat: vat_loss = self.vat(sent_feat_batch) else: vat_loss = 0 loss = self.gamma * (cluster_loss + vat_loss) + ae_loss if self.use_tensorboard: self.logger_tensorboard.log_value('cluster_loss', cluster_loss.data[0], ite) ############################################################# # self.logger_tensorboard.log_value('ae_loss', ae_loss.data[0], ite) ############################################################# if self.use_vat: self.logger_tensorboard.log_value('vat_loss', vat_loss.data[0], ite) self.logger_tensorboard.log_value('loss', loss.data[0], ite) loss.backward() self.optimizer.step()
class EnhancedKMeans(object): def __init__(self, n_clusters=4, update_interval=2, tol=0.001, lr=0.001, maxiter=2e4, batch_size=64, max_jobs=10, use_cuda=torch.cuda.is_available(), logger=None, verbose=False): self.n_clusters = n_clusters self.feat_dim = None self.data_size = None self.update_interval = update_interval self.tol = tol self.lr = lr self.maxiter = maxiter self.batch_size = batch_size self.max_jobs = max_jobs self.use_cuda = use_cuda self.verbose = verbose self.logger = logger if logger is not None: assert isinstance(self.logger, EKMLogger) self.kmeans = None self.cluster_layer = None self.optimizer = None self.last_pred = None self.current_p = None self.current_q = None def __initialize_models(self, feat, labels=None): self.data_size = feat.shape[0] self.feat_dim = feat.shape[1] if self.verbose: print('Pretraining Cluster Centers by KMeans') self.kmeans = KMeans(n_clusters=self.n_clusters, n_init=20, n_jobs=self.max_jobs, verbose=False) self.last_pred = self.kmeans.fit_predict(feat) if labels is not None: tmp_acc = cluster_acc(labels, self.last_pred) if self.verbose: print('KMeans acc is {}'.format(tmp_acc)) if self.verbose: print('Building Cluster Layer') # self.cluster_layer = ClusterNet(torch.Tensor(self.kmeans.cluster_centers_.astype(np.float32))) self.cluster_layer = ClusterNet(torch.from_numpy(self.kmeans.cluster_centers_.astype(np.float32))) if self.use_cuda: self.cluster_layer.cuda() if self.verbose: print('Building Optimizer') self.optimizer = optim.Adam(self.cluster_layer.parameters(), lr=self.lr) # self.optimizer = optim.SGD(self.cluster_layer.parameters(), lr=self.lr) def __update_target_distribute(self, feat): if self.verbose: print('Updating Target Distribution') all_q = np.zeros((self.data_size, self.n_clusters)) tmp_size = 0 for i in range(0, self.data_size, self.batch_size): tmp_feat = feat[i:i+self.batch_size].astype(np.float32) tmp_feat = Variable(torch.from_numpy(tmp_feat)) if self.use_cuda: tmp_feat = tmp_feat.cuda() q_batch = self.cluster_layer(tmp_feat) q_batch = q_batch.cpu().data.numpy() all_q[i:i+self.batch_size] = q_batch tmp_size += len(q_batch) assert tmp_size == self.data_size self.current_q = all_q self.current_p = self.__get_target_distribution(self.current_q) @staticmethod def __get_target_distribution(q): p = np.power(q, 2) / np.sum(q, axis=0, keepdims=True) p = p / np.sum(p, axis=1, keepdims=True) return p @staticmethod def __get_label_pred(q): pred = np.argmax(q, axis=1) return pred def __whether_convergence(self, pred_cur, pred_last): delta_label = np.sum(pred_cur != pred_last) / float(len(pred_cur)) return delta_label < self.tol def fit(self, feat, labels=None): self.__initialize_models(feat, labels=labels) self.__update_target_distribute(feat) if self.verbose: print('Begin to Iterate') index = 0 for ite in range(int(self.maxiter)): if ite % self.update_interval == (self.update_interval - 1): self.__update_target_distribute(feat) tmp_pred_cur = self.__get_label_pred(self.current_q) acc = None if labels is not None: acc = cluster_acc(labels, tmp_pred_cur) if self.logger is not None: self.logger.record_acc(acc, ite) if self.verbose: if acc is not None: print('Iter {} Acc {}'.format(ite,acc)) else: print('Update Target Distribution in Iter {}'.format(ite)) if ite > 0 and self.__whether_convergence(tmp_pred_cur, self.last_pred): break self.last_pred = tmp_pred_cur if index + self.batch_size > self.data_size: feat_batch = feat[index:] p_batch = self.current_p[index:] index = 0 else: feat_batch = feat[index: index + self.batch_size] p_batch = self.current_p[index: index + self.batch_size] feat_batch = Variable(torch.from_numpy(feat_batch.astype(np.float32))) p_batch = Variable(torch.from_numpy(p_batch.astype(np.float32))) if self.use_cuda: feat_batch = feat_batch.cuda() p_batch = p_batch.cuda() self.cluster_layer.zero_grad() q_batch = self.cluster_layer(feat_batch) cluster_loss = F.binary_cross_entropy(q_batch, p_batch) if self.logger is not None: self.logger.record_loss(cluster_loss.data[0], ite) cluster_loss.backward() self.optimizer.step()
def initialize_cluster_layer(self): self.cluster_layer = ClusterNet(torch.Tensor(self.kmeans.cluster_centers_.astype(np.float32))) if self.use_cuda: self.cluster_layer.cuda()