class DDPGAgent: def __init__(self, state_size, action_size, num_agents, hidden_actor, hidden_critic, lr_actor, lr_critic, buffer_size, agent_id, use_PER=False, seed=0): super(DDPGAgent, self).__init__() self.seed = torch.manual_seed(seed) self.agent_id = agent_id # num_agents*action_size self.actor_local = ActorNet(state_size, hidden_actor, action_size, seed=seed).to(device) self.critic_local = CriticNet(num_agents*state_size, num_agents*action_size, hidden_critic, 1, seed=seed).to(device) self.actor_target = ActorNet(state_size, hidden_actor, action_size, seed=seed).to(device) self.critic_target = CriticNet(num_agents*state_size, num_agents*action_size, hidden_critic, 1, seed=seed).to(device) self.actor_optimizer = Adam(self.actor_local.parameters(), lr=lr_actor) self.critic_optimizer = Adam(self.critic_local.parameters(), lr=lr_critic, weight_decay=0.) #weight_decay=1.e-5 self.memory = ReplayBuffer(buffer_size, num_agents, state_size, action_size, use_PER) # initialize targets same as original networks hard_update(self.actor_target, self.actor_local) hard_update(self.critic_target, self.critic_local) #self.actor_target.eval() #wont be training target net #self.critic_target.eval() def _act(self, obs): obs = obs.to(device) if len(obs.shape)==1: obs = obs.unsqueeze(0) #for batchnorm self.actor_local.eval() with torch.no_grad(): action_local = self.actor_local(obs).squeeze() self.actor_local.train() return action_local #tensor, action_size torch.Size([2]) def _target_act(self, obs): obs = obs.to(device) if len(obs.shape)==1: obs = obs.unsqueeze(0) #for batchnorm with torch.no_grad(): action_target = self.actor_target(obs).squeeze() return action_target
class Learner: def __init__(self, learner_id, config, dev, shared_state, shared_queue): self.action_size = config['action_space'] self.obs_size = config['obs_space'] self.shared_queue = shared_queue self.shared_state = shared_state self.dev = dev self.id = learner_id self.burn_in_length = config['burn_in_length'] # 40-80 self.learning_length = config['learning_length'] self.sequence_length = self.burn_in_length + self.learning_length self.n_step = config['n_step'] self.sequence = [] self.recurrent_state = [] self.priority = [] self.td_loss = deque(maxlen=self.learning_length) self.gamma = config['gamma'] # self.actor_parameter_update_interval = config['actor_parameter_update_interval'] self.actor = ActorNet(dev, config).to(self.dev) self.target_actor = ActorNet(dev, config).to(self.dev) self.critic = CriticNet(dev, config).to(self.dev) self.target_critic = CriticNet(dev, config).to(self.dev) self.actor.load_state_dict(self.shared_state["actor"].state_dict()) self.target_actor.load_state_dict( self.shared_state["target_actor"].state_dict()) self.critic.load_state_dict(self.shared_state["critic"].state_dict()) self.target_critic.load_state_dict( self.shared_state["target_critic"].state_dict()) # self.actor.load_state_dict(self.shared_state["actor"]) # self.target_actor.load_state_dict(self.shared_state["target_actor"]) # self.critic.load_state_dict(self.shared_state["critic"]) # self.target_critic.load_state_dict(self.shared_state["target_critic"]) self.learner_actor_rate = config['learner_actor_rate'] self.num_actors = learner_id self.n_actions = 1 self.max_frame = config['learner_max_frame'] self.memory_sequence_size = config['memory_sequence_size'] self.batch_size = config['batch_size'] self.memory = LearnerReplayMemory(self.memory_sequence_size, config, dev) self.model_path = './' # self.memory_path = './memory_data/' # self.model_save_interval = 10 # 50 self.learner_parameter_update_interval = config[ 'learner_parameter_update_interval'] # 50 self.target_update_inverval = config['target_update_interval'] # 100 self.gamma = config['gamma'] self.actor_lr = config['actor_lr'] self.critic_lr = config['critic_lr'] self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=self.actor_lr) self.actor_criterion = nn.MSELoss() self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=self.critic_lr) self.critic_criterion = nn.MSELoss() def __del__(self): self.shared_queue.close() self.shared_state.close() # self.save_model() def save_model(self): model_dict = { 'actor': self.actor.state_dict(), 'target_actor': self.target_actor.state_dict(), 'critic': self.critic.state_dict(), 'target_critic': self.target_critic.state_dict() } torch.save(model_dict, self.model_path + 'model.pt') def update_target_model(self): self.target_actor.load_state_dict(self.actor.state_dict()) self.target_critic.load_state_dict(self.critic.state_dict()) def run(self): time_check(-1) while self.memory.size() < self.batch_size: self.memory.append(self.shared_queue.get(block=True)) # self.memory.append(self.shared_queue.get()) print('\rmem size: ', self.memory.size(), end='\r') time_check(1) count_mem = 0 frame = 0 win_v = vis.line(Y=torch.Tensor([0]), opts=dict(title='V_loss')) win_p = vis.line(Y=torch.Tensor([0]), opts=dict(title='P_loss')) while frame < self.max_frame: # sleep(0.0001) # if self.shared_queue.qsize()==0 and count_mem <0: # self.memory.append(self.shared_queue.get(block=True)) # # for i in range(self.shared_queue.qsize()): # self.memory.append(self.shared_queue.get(block=False)) # count_mem += self.learner_actor_rate # print('waiting shared q {}/{}'.format(self.memory.size(),self.batch_size)) # self.shared_state['frame'][self.id]=frame # while self.shared_state['sleep'][self.id] : # sleep(0.5) # if self.shared_queue.qsize()==0 and count_mem <0: # self.memory.append(self.shared_queue.get(block=True)) # self.memory.append(self.shared_queue.get()) # for i in range(self.shared_queue.qsize()): ## global_buf.append(self.shared_queue.get()) # self.memory.append(self.shared_queue.get()) # count_mem += self.learner_actor_rate if self.shared_queue.qsize() != 0: self.memory.append(self.shared_queue.get(block=True)) frame += 1 count_mem -= 1 episode_index, sequence_index, obs_seq, action_seq, reward_seq, gamma_seq, a_state, ta_state, c_state, tc_state = self.memory.sample( ) self.actor.set_state(a_state[0], a_state[1]) self.target_actor.set_state(ta_state[0], ta_state[1]) self.critic.set_state(c_state[0], c_state[1]) self.target_critic.set_state(tc_state[0], tc_state[1]) ### burn-in step ### _ = [self.actor(obs_seq[i]) for i in range(self.burn_in_length)] _ = [ self.critic(obs_seq[i], action_seq[i]) for i in range(self.burn_in_length) ] _ = [ self.target_actor(obs_seq[i]) for i in range(self.burn_in_length + self.n_step) ] _ = [ self.target_critic(obs_seq[i], action_seq[i]) for i in range(self.burn_in_length + self.n_step) ] ### learning steps ### # update ciritic q_value = torch.zeros(self.learning_length * self.batch_size, self.n_actions) target_q_value = torch.zeros( self.learning_length * self.batch_size, self.n_actions) for i in range(self.learning_length): obs_i = self.burn_in_length + i next_obs_i = self.burn_in_length + i + self.n_step q_value[i * self.batch_size:(i + 1) * self.batch_size] = self.critic(obs_seq[obs_i], action_seq[obs_i]) with torch.no_grad(): next_q_value = self.target_critic( obs_seq[next_obs_i], self.target_actor(obs_seq[next_obs_i])) target_q_val = reward_seq[obs_i] + ( gamma_seq[next_obs_i]**self.n_step) * next_q_value # target_q_val = invertical_vf(target_q_val) target_q_value[i * self.batch_size:(i + 1) * self.batch_size] = target_q_val critic_loss = self.actor_criterion(q_value, target_q_value.detach()) self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # update actor self.actor.reset_state() self.critic.reset_state() actor_loss = torch.zeros(self.learning_length * self.batch_size, self.n_actions).to(self.dev) for i in range(self.learning_length): obs_i = i + self.burn_in_length action = self.actor(obs_seq[obs_i]) actor_loss[i * self.batch_size:(i + 1) * self.batch_size] = -self.critic( obs_seq[obs_i], self.actor(obs_seq[obs_i])) actor_loss = actor_loss.mean() self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # update target networks if frame % self.target_update_inverval == 0: self.update_target_model() print('#', frame, 'critic_loss:', critic_loss.item(), ' actor_loss:', actor_loss.item(), ' count:', count_mem) win_p = vis.line(X=torch.Tensor([frame]), Y=torch.Tensor([actor_loss.item()]), win=win_p, update='append') win_v = vis.line(X=torch.Tensor([frame]), Y=torch.Tensor([critic_loss.item()]), win=win_v, update='append') # calc priority average_td_loss = ((q_value - target_q_value)**2).detach().to( self.dev) # average_td_loss = np.mean(((q_value - target_q_value)**2).detach().cpu().numpy() , axis = 1) for i in range(len(episode_index)): td = average_td_loss[i:-1:self.batch_size] self.memory.priority[episode_index[i]][ sequence_index[i]] = calc_priority(td).cpu().view(1, -1) self.memory.total_priority[episode_index[i]] = torch.cat( self.memory.priority[episode_index[i]]).sum(0).view(1, -1) # self.memory.priority[episode_index[i]][sequence_index[i]] = calc_priority(td) # self.memory.total_priority[episode_index[i]] = sum(self.memory.priority[episode_index[i]]) # if frame % self.model_save_interval == 0: # self.save_model() if frame % self.learner_parameter_update_interval == 0: # print('learner update ') # [self.shared_state["actor"][k] = v.cpu() for k,v in self.actor.state_dict().item() ] # [self.shared_state["target_actor"][k] = v.cpu() for k,v in self.target_actor.state_dict().item() ] # [self.shared_state["critic"][k] = v.cpu() for k,v in self.critic.state_dict().item() ] # [self.shared_state["target_critic"][k] = v.cpu() for k,v in self.target_critic.state_dict().item() ] # # for k,v in self.actor.state_dict().items(): # self.shared_state["actor"][k] = v.cpu() # for k,v in self.target_actor.state_dict().items(): # self.shared_state["target_actor"][k] = v.cpu() # for k,v in self.critic.state_dict().items(): # self.shared_state["critic"][k] = v.cpu() # for k,v in self.target_critic.state_dict().items(): # self.shared_state["target_critic"][k] = v.cpu() # self.shared_state["actor"] = self.actor.state_dict() # self.shared_state["target_actor"] = self.target_actor.state_dict() # self.shared_state["critic"] = self.critic.state_dict() # self.shared_state["target_critic"] = self.target_critic.state_dict() self.shared_state["actor"].load_state_dict( self.actor.state_dict()) self.shared_state["critic"].load_state_dict( self.critic.state_dict()) self.shared_state["target_actor"].load_state_dict( self.target_actor.state_dict()) self.shared_state["target_critic"].load_state_dict( self.target_critic.state_dict()) for i in range(self.num_actors): self.shared_state["update"][i] = True print('learner_update', self.actor.policy_l0.weight.data[0][0]) self.actor.reset_state() self.target_actor.reset_state() self.critic.reset_state() self.target_critic.reset_state()
class D4PG_Agent: """ PyTorch Implementation of D4PG: "Distributed Distributional Deterministic Policy Gradients" (Barth-Maron, Hoffman, et al., 2018) As described in the paper at: https://arxiv.org/pdf/1804.08617.pdf Much thanks also to the original DDPG paper: "Continuous Control with Deep Reinforcement Learning" (Lillicrap, Hunt, et al., 2016) https://arxiv.org/pdf/1509.02971.pdf And to: "A Distributional Perspective on Reinforcement Learning" (Bellemare, Dabney, et al., 2017) https://arxiv.org/pdf/1707.06887.pdf D4PG utilizes distributional value estimation, n-step returns, prioritized experience replay (PER), distributed K-actor exploration, and off-policy actor-critic learning to achieve very fast and stable learning for continuous control tasks. This version of the Agent is written to interact with Udacity's Continuous Control robotic arm manipulation environment which provides 20 simultaneous actors, negating the need for K-actor implementation. Thus, this code has no multiprocessing functionality. It could be easily added as part of the main.py script. In the original D4PG paper, it is suggested in the data that PER does not have significant (or perhaps any at all) effect on the speed or stability of learning. Thus, it too has been left out of this implementation but may be added as a future TODO item. """ def __init__(self, env, args, e_decay=1, e_min=0.05, l2_decay=0.0001, update_type="hard"): """ Initialize a D4PG Agent. """ self.device = args.device self.framework = "D4PG" self.eval = args.eval self.agent_count = env.agent_count self.actor_learn_rate = args.actor_learn_rate self.critic_learn_rate = args.critic_learn_rate self.batch_size = args.batch_size self.buffer_size = args.buffer_size self.action_size = env.action_size self.state_size = env.state_size self.C = args.C self._e = args.e self.e_decay = e_decay self.e_min = e_min self.gamma = args.gamma self.rollout = args.rollout self.tau = args.tau self.update_type = update_type self.num_atoms = args.num_atoms self.vmin = args.vmin self.vmax = args.vmax self.atoms = torch.linspace(self.vmin, self.vmax, self.num_atoms).to(self.device) self.t_step = 0 self.episode = 0 # Set up memory buffers, currently only standard replay is implemented # self.memory = ReplayBuffer(self.device, self.buffer_size, self.gamma, self.rollout) # Initialize ACTOR networks # self.actor = ActorNet(args.layer_sizes, self.state_size, self.action_size).to(self.device) self.actor_target = ActorNet(args.layer_sizes, self.state_size, self.action_size).to(self.device) self._hard_update(self.actor, self.actor_target) self.actor_optim = optim.Adam(self.actor.parameters(), lr=self.actor_learn_rate, weight_decay=l2_decay) # Initialize CRITIC networks # self.critic = CriticNet(args.layer_sizes, self.state_size, self.action_size, self.num_atoms).to(self.device) self.critic_target = CriticNet(args.layer_sizes, self.state_size, self.action_size, self.num_atoms).to(self.device) self._hard_update(self.actor, self.actor_target) self.critic_optim = optim.Adam(self.critic.parameters(), lr=self.critic_learn_rate, weight_decay=l2_decay) self.new_episode() def act(self, states, eval=False): """ Predict an action using a policy/ACTOR network π. Scaled noise N (gaussian distribution) is added to all actions todo encourage exploration. """ states = states.to(self.device) with torch.no_grad(): actions = self.actor(states).detach().cpu().numpy() if not eval: noise = self._gauss_noise(actions.shape) actions += noise return np.clip(actions, -1, 1) def step(self, states, actions, rewards, next_states, pretrain=False): """ Add the current SARS' tuple into the short term memory, then learn """ # Current SARS' stored in short term memory, then stacked for NStep experience = list(zip(states, actions, rewards, next_states)) self.memory.store_experience(experience) self.t_step += 1 # Learn after done pretraining if not pretrain: self.learn() def learn(self): """ Performs a distributional Actor/Critic calculation and update. Actor πθ and πθ' Critic Zw and Zw' (categorical distribution) """ # Sample from replay buffer, REWARDS are sum of ROLLOUT timesteps # Already calculated before storing in the replay buffer. # NEXT_STATES are ROLLOUT steps ahead of STATES batch = self.memory.sample(self.batch_size) states, actions, rewards, next_states = batch atoms = self.atoms.unsqueeze(0) # Calculate Yᵢ from target networks using πθ' and Zw' # These tensors are not needed for backpropogation, so detach from the # calculation graph (literally doubles runtime if this is not detached) target_dist = self._get_targets(rewards, next_states).detach() # Calculate log probability DISTRIBUTION using Zw w.r.t. stored actions log_probs = self.critic(states, actions, log=True) # Calculate the critic network LOSS (Cross Entropy), CE-loss is ideal # for categorical value distributions as utilized in D4PG. # estimates distance between target and projected values critic_loss = -(target_dist * log_probs).sum(-1).mean() # Predict action for actor network loss calculation using πθ predicted_action = self.actor(states) # Predict value DISTRIBUTION using Zw w.r.t. action predicted by πθ probs = self.critic(states, predicted_action) # Multiply probabilities by atom values and sum across columns to get # Q-Value expected_reward = (probs * atoms).sum(-1) # Calculate the actor network LOSS (Policy Gradient) # Take the mean across the batch and multiply in the negative to # perform gradient ascent actor_loss = -expected_reward.mean() # Perform gradient ascent self.actor_optim.zero_grad() actor_loss.backward() self.actor_optim.step() # Perform gradient descent self.critic_optim.zero_grad() critic_loss.backward() self.critic_optim.step() self._update_networks() self.actor_loss = actor_loss.item() self.critic_loss = critic_loss.item() def initialize_memory(self, pretrain_length, env): """ Fills up the ReplayBuffer memory with PRETRAIN_LENGTH number of experiences before training begins. """ if len(self.memory) >= pretrain_length: print("Memory already filled, length: {}".format(len(self.memory))) return print("Initializing memory buffer.") states = env.states while len(self.memory) < pretrain_length: actions = np.random.uniform(-1, 1, (self.agent_count, self.action_size)) next_states, rewards, dones = env.step(actions) self.step(states, actions, rewards, next_states, pretrain=True) if self.t_step % 10 == 0 or len(self.memory) >= pretrain_length: print("Taking pretrain step {}... memory filled: {}/{}\ ".format(self.t_step, len(self.memory), pretrain_length)) states = next_states print("Done!") self.t_step = 0 def _get_targets(self, rewards, next_states): """ Calculate Yᵢ from target networks using πθ' and Zw' """ target_actions = self.actor_target(next_states) target_probs = self.critic_target(next_states, target_actions) # Project the categorical distribution onto the supports projected_probs = self._categorical(rewards, target_probs) return projected_probs def _categorical(self, rewards, probs): """ Returns the projected value distribution for the input state/action pair While there are several very similar implementations of this Categorical Projection methodology around github, this function owes the most inspiration to Zhang Shangtong and his excellent repository located at: https://github.com/ShangtongZhang """ # Create local vars to keep code more concise vmin = self.vmin vmax = self.vmax atoms = self.atoms num_atoms = self.num_atoms gamma = self.gamma rollout = self.rollout rewards = rewards.unsqueeze(-1) delta_z = (vmax - vmin) / (num_atoms - 1) # Rewards were stored with 0->(N-1) summed, take Reward and add it to # the discounted expected reward at N (ROLLOUT) timesteps projected_atoms = rewards + gamma**rollout * atoms.unsqueeze(0) projected_atoms.clamp_(vmin, vmax) b = (projected_atoms - vmin) / delta_z # It seems that on professional level GPUs (for instance on AWS), the # floating point math is accurate to the degree that a tensor printing # as 99.00000 might in fact be 99.000000001 in the backend, perhaps due # to binary imprecision, but resulting in 99.00000...ceil() evaluating # to 100 instead of 99. Forcibly reducing the precision to the minimum # seems to be the only solution to this problem, and presents no issues # to the accuracy of calculating lower/upper_bound correctly. precision = 1 b = torch.round(b * 10**precision) / 10**precision lower_bound = b.floor() upper_bound = b.ceil() m_lower = (upper_bound + (lower_bound == upper_bound).float() - b) * probs m_upper = (b - lower_bound) * probs projected_probs = torch.tensor(np.zeros(probs.size())).to(self.device) for idx in range(probs.size(0)): projected_probs[idx].index_add_(0, lower_bound[idx].long(), m_lower[idx].double()) projected_probs[idx].index_add_(0, upper_bound[idx].long(), m_upper[idx].double()) return projected_probs.float() @property def e(self): """ This property ensures that the annealing process is run every time that E is called. Anneals the epsilon rate down to a specified minimum to ensure there is always some noisiness to the policy actions. Returns as a property. """ self._e = max(self.e_min, self._e * self.e_decay) return self._e def _gauss_noise(self, shape): """ Returns the epsilon scaled noise distribution for adding to Actor calculated action policy. """ n = np.random.normal(0, 1, shape) return self.e * n def new_episode(self): """ Handle any cleanup or steps to begin a new episode of training. """ self.memory.init_n_step() self.episode += 1 def _update_networks(self): """ Updates the network using either DDPG-style soft updates (w/ param \ TAU), or using a DQN/D4PG style hard update every C timesteps. """ if self.update_type == "soft": self._soft_update(self.actor, self.actor_target) self._soft_update(self.critic, self.critic_target) elif self.t_step % self.C == 0: self._hard_update(self.actor, self.actor_target) self._hard_update(self.critic, self.critic_target) def _soft_update(self, active, target): """ Slowly updated the network using every-step partial network copies modulated by parameter TAU. """ for t_param, param in zip(target.parameters(), active.parameters()): t_param.data.copy_(self.tau * param.data + (1 - self.tau) * t_param.data) def _hard_update(self, active, target): """ Fully copy parameters from active network to target network. To be used in conjunction with a parameter "C" that modulated how many timesteps between these hard updates. """ target.load_state_dict(active.state_dict())
class Agent: def __init__(self, env): """Args: env(gym.Core.env): environment """ with open('./configuration.json') as config_file: self.config = json.load(config_file)['agent'] self.env = env self.state = None self.epsilon = None self.epsilon_decay = None self.state_size = None self.actions_size = None self.actor = None self.actor_target = None self.critic = None self.critic_target = None self.actor_optim = None self.critic_optim = None self.gamma = None self.memory = None self.batch_size = None self.action_space = None self.normalizer = None def __str__(self): return 'RL_Agent Object' def reset(self): self.action_space = self.env.action_space obs_space = self.env.observation_space.spaces obs_len = obs_space['observation'].shape[0] goal_len = obs_space['desired_goal'].shape[0] self.state_size = obs_len + goal_len self.actions_size = self.action_space.shape[0] max_action = float(self.env.action_space.high[0]) self.actor = ActorNet(self.state_size, *self.config['net_sizes'], self.actions_size, max_action) self.critic = CriticNet(self.state_size, *self.config['net_sizes'], self.actions_size) self.actor_target = ActorNet(self.state_size, *self.config['net_sizes'], self.actions_size, max_action) self.critic_target = CriticNet(self.state_size, *self.config['net_sizes'], self.actions_size) self.actor_optim = Adam(self.actor.parameters(), lr=self.config['learning_rate']) self.critic_optim = Adam(self.critic.parameters(), lr=self.config['learning_rate']) self.update(self.critic_target, self.critic, 1) self.update(self.actor_target, self.actor, 1) self.epsilon = self.config['epsilon'] self.epsilon_decay = self.config['epsilon_decay'] self.gamma = self.config['gamma'] if self.config['PER']: self.memory = self.memory = PrioritizedMemory( self.config['memory_size'], self.config["memory_alpha"], self.config["memory_epsilon"], self.config["memory_beta"], self.config["memory_beta_increment"]) else: self.memory = ReplayBuffer(self.config['memory_size']) self.batch_size = self.config['batch_size'] self.normalizer = Normalizer(obs_len, goal_len) # warm up the normalizer self.normalizer.observe(self.env.reset()) def run(self, train): total_reward = 0 done = False self.state = self.env.reset() self.normalizer.observe(self.state) self.state = self.normalizer.normalize(self.state) ep_transitions = [] # start episode while not done: if self.config['render']: self.env.render() # act and observe action = self._get_action_epsilon_greedy(self.state) obs, reward, done, info = self.env.step(action) total_reward += reward # normalize the state self.normalizer.observe(obs) obs = self.normalizer.normalize(obs) # save the transition for later HER processing transition = [self.state, reward, action, obs, not done] ep_transitions.append(transition) # save to memory self.append_sample_to_memory( *copy.deepcopy((flatten_state_dict_for_model(self.state), reward, action, flatten_state_dict_for_model(obs), not done))) self.state = obs if random.random() < self.config["her-probability"]: her_trs = generate_her_transitions(ep_transitions, self.env.compute_reward, self.config['her-type'], self.config['her-k_value']) for t in her_trs: self.append_sample_to_memory(*t) if len(self.memory) > self.batch_size * 5 and train: for i in range(40): self._train() self.soft_update_networks() if self.epsilon > self.config['epsilon_min']: self.epsilon *= self.epsilon_decay return total_reward def _train(self): batch, indexes, importance_sampling_weights = None, None, None if self.config['PER']: batch, indexes, importance_sampling_weights = \ self.sample_from_per_memory(self.batch_size) importance_sampling_weights = torch.Tensor( importance_sampling_weights) else: batch = self.memory.get_random_batch(self.batch_size) state_batch = torch.Tensor(batch[0]) reward_batch = torch.Tensor(batch[1]) action_batch = torch.Tensor(batch[2]) next_state_batch = torch.Tensor(batch[3]) # unused - see additional info in the Readme # mask_batch = torch.Tensor(batch[4] * 1) next_q_values = self.critic_target(next_state_batch, self.actor_target(next_state_batch)) expected_q_values = reward_batch + (self.gamma * next_q_values) expected_q_values = expected_q_values.clamp_(-50., 0.).detach() self.critic_optim.zero_grad() q_values = self.critic(state_batch, action_batch) if self.config['PER']: errors = torch.abs(q_values - expected_q_values) critic_loss = (importance_sampling_weights * errors**2).sum() for i in range(self.batch_size): index = indexes[i] self.memory.update(index, errors[i].detach().numpy()) else: critic_loss = mse_loss(q_values, expected_q_values) critic_loss.backward() self.critic_optim.step() self.actor_optim.zero_grad() policy_loss = self.critic(state_batch, self.actor(state_batch)) action_reg = (self.actor.action_preact**2).mean() policy_loss = -policy_loss.mean() + action_reg policy_loss.backward() self.actor_optim.step() def get_action_greedy(self, state): """Hey, actor - act!... plus detach().numpy() ...""" return self.actor(flatten_state_dict_for_model(state)).detach().numpy() def _get_action_epsilon_greedy(self, state): """Returns an action for given state by using the actor network. With epsilon probability, it returns a fully random action. In both cases, there is a OU noise added as well. Parameters can be specified in the configuration file. """ if random.random() > self.epsilon: action = self.get_action_greedy(state) + \ np.random.normal(scale=0.2, size=self.actions_size) else: action = self.env.action_space.sample() return np.clip(action, -1., 1.) def append_sample_to_memory(self, state, reward, action, next_state, done): """Adds given transition to the memory. In case of using Prioritized Experience Replay, it calculates the TD error.""" if not self.config['PER']: self.memory.append((state, reward, action, next_state, done)) else: q = self.critic( torch.Tensor(state).unsqueeze(0), torch.Tensor(action).unsqueeze(0)) target_val = self.critic_target( torch.Tensor(next_state).unsqueeze(0), self.actor_target(torch.Tensor(next_state).unsqueeze(0))) target = reward + (self.gamma * target_val * (done * 1)).detach() error = abs(q - target).detach().numpy() self.memory.add((state, reward, action, next_state, done), error) def soft_update_networks(self): self.update(self.critic_target, self.critic, self.config['network_update_amount']) self.update(self.actor_target, self.actor, self.config['network_update_amount']) def update(self, target, src, amount): for target_param, param in zip(target.parameters(), src.parameters()): target_param.data.copy_(target_param.data * (1.0 - amount) + param.data * amount) def sample_from_per_memory(self, batch_size): transition_batch, indexes, importance_sampling_weights = \ self.memory.sample(batch_size) x, r, u, y, d = [], [], [], [], [] for i in transition_batch: X, R, U, Y, D = i x.append(np.array(X, copy=False)) y.append(np.array(Y, copy=False)) u.append(np.array(U, copy=False)) r.append(np.array(R, copy=False)) d.append(np.array(D, copy=False)) return ((np.array(x), np.array(r).reshape(-1, 1), np.array(u), np.array(y), np.array(d).reshape(-1, 1)), indexes, importance_sampling_weights)
class Learner: def __init__(self, n_actors): self.env = suite.load(domain_name="walker", task_name="run") self.n_actions = self.env.action_spec().shape[0] self.obs_size = get_obs(self.env.reset().observation).shape[1] self.n_actors = n_actors self.burn_in_length = 20 # 40-80 self.learning_length = 40 self.sequence_length = self.burn_in_length + self.learning_length self.n_step = 5 self.memory_sequence_size = 5000000 self.batch_size = 32 self.memory = LearnerReplayMemory( memory_sequence_size=self.memory_sequence_size, batch_size=self.batch_size) self.model_path = './model_data/' self.memory_path = './memory_data/' self.actor = ActorNet(self.obs_size, self.n_actions, 0).cuda() self.target_actor = deepcopy(self.actor).eval() self.critic = CriticNet(self.obs_size, self.n_actions, 0).cuda() self.target_critic = deepcopy(self.critic).eval() self.model_save_interval = 50 # 50 self.memory_update_interval = 50 # 50 self.target_update_inverval = 500 # 100 self.gamma = 0.997 self.actor_lr = 1e-4 self.critic_lr = 1e-3 self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=self.actor_lr) self.actor_criterion = nn.MSELoss() self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=self.critic_lr) self.critic_criterion = nn.MSELoss() self.save_model() def save_model(self): model_dict = { 'actor': self.actor.state_dict(), 'target_actor': self.target_actor.state_dict(), 'critic': self.critic.state_dict(), 'target_critic': self.target_critic.state_dict() } torch.save(model_dict, self.model_path + 'model.pt') def update_target_model(self): self.target_actor.load_state_dict(self.actor.state_dict()) self.target_critic.load_state_dict(self.critic.state_dict()) def run(self): # memory not enough while self.memory.sequence_counter < self.batch_size * 100: for i in range(self.n_actors): is_memory = os.path.isfile(self.memory_path + '/memory{}.pt'.format(i)) if is_memory: self.memory.load(i) sleep(0.1) print('learner memory sequence size:', self.memory.sequence_counter) step = 0 while True: if step % 100 == 0: print('learning step:', step) start = time() step += 1 episode_index, sequence_index, obs_seq, action_seq, reward_seq, terminal_seq, a_state, ta_state, c_state, tc_state = self.memory.sample( ) self.actor.set_state(a_state[0], a_state[1]) self.target_actor.set_state(ta_state[0], ta_state[1]) self.critic.set_state(c_state[0], c_state[1]) self.target_critic.set_state(tc_state[0], tc_state[1]) ### burn-in step ### _ = [self.actor(obs) for obs in obs_seq[0:self.burn_in_length]] _ = [ self.critic(obs, action) for obs, action in zip(obs_seq[0:self.burn_in_length], action_seq[0:self.burn_in_length]) ] _ = [ self.target_actor(obs) for obs in obs_seq[0:self.burn_in_length + self.n_step] ] _ = [ self.target_critic(obs, action) for obs, action in zip( obs_seq[0:self.burn_in_length + self.n_step], action_seq[0:self.burn_in_length + self.n_step]) ] ### learning steps ### # update ciritic q_value = torch.zeros(self.learning_length * self.batch_size, self.n_actions).cuda() target_q_value = torch.zeros( self.learning_length * self.batch_size, self.n_actions).cuda() for i in range(self.learning_length): obs_i = self.burn_in_length + i next_obs_i = self.burn_in_length + i + self.n_step q_value[i * self.batch_size:(i + 1) * self.batch_size] = self.critic(obs_seq[obs_i], action_seq[obs_i]) next_q_value = self.target_critic( obs_seq[next_obs_i], self.target_actor(obs_seq[next_obs_i])) target_q_val = reward_seq[obs_i] + ( self.gamma**self.n_step) * ( 1. - terminal_seq[next_obs_i - 1]) * next_q_value target_q_val = invertical_vf(target_q_val) target_q_value[i * self.batch_size:(i + 1) * self.batch_size] = target_q_val critic_loss = self.actor_criterion(q_value, target_q_value.detach()) self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # update actor self.actor.reset_state() self.critic.reset_state() actor_loss = torch.zeros(self.learning_length * self.batch_size, self.n_actions).cuda() for i in range(self.learning_length): obs_i = i + self.burn_in_length action = self.actor(obs_seq[obs_i]) actor_loss[i * self.batch_size:(i + 1) * self.batch_size] = -self.critic( obs_seq[obs_i], self.actor(obs_seq[obs_i])) actor_loss = actor_loss.mean() self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # update target networks if step % self.target_update_inverval == 0: self.update_target_model() # calc priority average_td_loss = np.mean( (q_value - target_q_value).detach().cpu().numpy()**2., axis=1) for i in range(len(episode_index)): td = average_td_loss[i:-1:self.batch_size] self.memory.priority[episode_index[i]][ sequence_index[i]] = calc_priority(td) self.memory.total_priority[episode_index[i]] = sum( self.memory.priority[episode_index[i]]) if step % self.model_save_interval == 0: self.save_model() if step % self.memory_update_interval == 0: for i in range(self.n_actors): is_memory = os.path.isfile(self.memory_path + '/memory{}.pt'.format(i)) if is_memory: self.memory.load(i) sleep(0.1) self.actor.reset_state() self.target_actor.reset_state() self.critic.reset_state() self.target_critic.reset_state()