def get(self): user_id = logic.get_current_userid(self.request.cookies.get('user')) if user_id is None: self.redirect('/') return discount_key_str = self.request.GET.get('id') user, status, errcode = logic.user_get(user_id, None) if status != "OK": self.render("error.html", {'error_code': errcode, 'error_string': status, 'lang': LANG}) return discount, status, errcode = logic.discount_get(discount_key_str, user_id) if status != "OK": self.render("error.html", {'error_code': errcode, 'error_string': status, 'lang': LANG}) return try: discount = Discount.to_json(discount, None, None) is_new = False logging.info("EDIT OR NEW? " + str(self.request.GET.get('new')) + " == true? -- " + str(self.request.GET.get('new') == 'true')) if self.request.GET.get('new') == 'true': is_new = True self.render('discount_edit.html', {'is_new': is_new, 'discount': discount, 'user': user, 'lang' : LANG }); except TypeError, e: self.render("error.html", {'error_code': 500, 'error_string': str(e), 'lang': LANG}) return
def get(self): user_id = logic.get_current_userid(self.request.cookies.get('user')) if user_id is None: self.redirect('/') return discount_key_str = self.request.GET.get('id') user, status, errcode = logic.user_get(user_id, None) if status != "OK": self.render("error.html", {'error_code': errcode, 'error_string': status, 'lang': LANG}) return discount, status, errcode = logic.discount_get(discount_key_str, user_id) if status != "OK": self.render("error.html", {'error_code': errcode, 'error_string': status, 'lang': LANG}) return place, status, errcode = logic.place_get(None, discount.place.urlsafe()) if status != "OK": self.render("error.html", {'error_code': errcode, 'error_string': status, 'lang': LANG}) return try: discount = Discount.to_json(discount, None, None) discount['title'] = discount['title_'+LANG_NAME] discount['description'] = discount['description_'+LANG_NAME] if place.owner is not None and place.owner == user.key: owner = True else: owner = False self.render('discount.html', {'discount': discount, 'place_name': place.name, 'owner' : owner, 'user': user, 'lang' : LANG, 'lang_name': LANG_NAME }); except TypeError, e: self.render("error.html", {'error_code': 500, 'error_string': str(e), 'lang': LANG}) return
def get(self): user_id = logic.get_current_userid(self.request.cookies.get('user')) if user_id is None: self.redirect('/') return rest_key = self.request.GET.get('rest_id') user, status, errcode = logic.user_get(user_id, None) if status != "OK": self.render("error.html", {'error_code': errcode, 'error_string': status, 'lang': LANG}) return discount = Discount() discount.place = Place.make_key(None, rest_key) try: discount = Discount.to_json(discount, None, None) self.render('discount_edit.html', {'is_new': 'True', 'discount': discount, 'user': user, 'lang' : LANG }); except TypeError, e: self.render("error.html", {'error_code': 500, 'error_string': str(e), 'lang': LANG}) return
def get(self, key): auth = self.request.headers.get("Authorization") if auth is None or len(auth) < 1: auth = self.request.cookies.get("user") user_id = logic.get_current_userid(auth) if 'publish' in self.request.url: #publish discount discount, status, errcode = logic.discount_publish(key, user_id) else: #get discount discount, status, errcode = logic.discount_get(key, user_id) if status == "OK": try: discount = Discount.to_json(discount, None, None) self.response.headers['Content-Type'] = 'application/json' self.response.write(json.dumps(discount)) except TypeError, e: self.response.set_status(500) self.response.write(str(e))
def get(self): #get list of discounts, with filters auth = self.request.headers.get("Authorization") if auth is None or len(auth) < 1: auth = self.request.cookies.get("user") user_id = logic.get_current_userid(auth) get_values = self.request.GET filters = {} filters['place'] = get_values.get('place') filters['coupon_user'] = get_values.get('coupon_user') filters['published'] = get_values.get('published') filters['passed'] = get_values.get('passed') dlist, status, errcode = logic.discount_list_get(filters, user_id) if status == "OK": try: dlist = [Discount.to_json(d, None, None) for d in dlist] self.response.headers['Content-Type'] = 'application/json' self.response.write(json.dumps(dlist)) except TypeError, e: self.response.set_status(500) self.response.write(str(e))
body = json.loads(self.request.body) try: discount = Discount.from_json(body) except TypeError, e: self.response.set_status(400) self.response.write(str(e)) return except Exception, e: self.response.set_status(400) self.response.write(str(e)) return discount, status, errcode = logic.discount_create(discount, user_id) if status == "OK": try: discount = Discount.to_json(discount, None, None) self.response.headers['Content-Type'] = 'application/json' self.response.write(json.dumps(discount)) except TypeError, e: self.response.set_status(500) self.response.write(str(e)) else: self.response.set_status(errcode) self.response.write(status) class DiscountHandler(webapp2.RequestHandler): def get(self, key): auth = self.request.headers.get("Authorization")
def recommend(user_id, filters, purpose='dinner with tourists', n=5): """ It computes the recommendations for the user, according to specified filters and parameters. When possible, the recommendation list is personalized, using the cluster-based algorithm. If the personalized algorithm fails to find the required number of recommended place, an average-based non-personalized recommendation algorithm is used. If still other places are needed, the recommendation list is filled with places ordered by distance from user. Input: - user_id: is of the requester - filters: filters for places of interest for the user - purpose: the purpose the user is interested in - n: number of recommended places requested by the user Available filters: //- 'city': 'city!province!state!country' The 'city' filter contains the full description of the city, with values separated with a '!'. This string is split and used to retrieve only the places that are in the specified city. 'null' is used if part of the full city description is not available [example: 'Trento!TN!null!Italy' or if a bigger reagion is considered [example: 'null!TN!null!Italy' retrieves all places in the province of Trento] - 'lat', 'lon' and 'max_dist': lat and lon indicates the user position, while max_dist is a measure expressed in meters and represnt the radius of the circular region the user is interested in. Returns a list of n places in json format """ logging.info("recommender.recommend START - user_id=" + str(user_id) + ', filters=' + str(filters) + ', purpose=' + str(purpose) + ', n=' + str(n)) # places is already a json list start = datetime.now() user_max_dist = None if filters is not None and 'max_dist' in filters and filters['max_dist'] is not None and filters['max_dist'] > 0: user_max_dist = filters['max_dist'] #get places for a larger area filters['max_dist'] = 2 * user_max_dist places, status, errcode = logic.place_list_get(filters, user_id) logging.info("RECOMMEND places loaded ") if status != "OK" or places is None or len(places) < 1: # the system do not know any place within these filters logging.info("recommender.recommend END - no places") logging.error(str(errcode) + ": " + status) return None logging.warning("Loaded places for double distance: " + str(datetime.now() - start)) start = datetime.now() closest = [] out_distance = [] for p in places: if 'lat' in filters and 'lon' in filters and filters['lat'] is not None and filters['lon'] is not None: # add distance to user for each place p['distance'] = distance( p['address']['lat'], p['address']['lon'], filters['lat'], filters['lon']) if p['distance'] is not None and user_max_dist is not None and p['distance'] <= user_max_dist: closest.append(p) else: out_distance.append(p) if len(closest) >= n: places = closest elif len(closest) == 0: places = out_distance else: #TODO: fill missing spaces with outliers? places = closest logging.warning("removing places that are too far: " + str(datetime.now() - start)) place_ids = [] if places is not None: place_ids = [Place.make_key(None, place['key']).id() for place in places] scores = None purpose_list = ["dinner with tourists", "romantic dinner", "dinner with friends", "best price/quality ratio"] start = datetime.now() # logging.warning("RECOMMEND START get cluster-based predictions for all purposes: " + str(start)) for p in purpose_list: if p == purpose: start2 = datetime.now() scores = cluster_based(user_id, place_ids, p, n, loc_filters=filters) logging.warning("RECOMMEND END get cluster-based predictions: " + str(datetime.now()-start2)) else: q = taskqueue.Queue('recommendations') task = taskqueue.Task(params={'user_id': user_id, 'place_ids': place_ids, 'purpose': p, 'n': n, 'loc_filters': str(filters)}, url='/recommender/compute_cluster_based', method='POST', countdown=10) q.add(task) logging.warning("Getting recommendations from cluster and starting computation for other purposes: " + str(datetime.now() - start)) log_text = "RECOMMEND scores from cluster-based : " if scores is None: log_text += "None" else: log_text += str(len(scores)) logging.info(log_text) start = datetime.now() if scores is None or (len(scores) < n and len(scores) < len(places)): # cluster-based recommendation failed # non-personalized recommendation rating_filters = {} if places is not None: rating_filters['places'] = place_ids rating_filters['purpose'] = purpose ratings = load_data(rating_filters) if ratings is None: logging.info("ratings for places: None") else: logging.info("ratings for places: " + str(len(ratings))) items = {} if ratings is not None: for other in ratings: if other != user_id: for item in ratings[other]: if purpose in ratings[other][item]: if item not in items.keys(): items[item] = [] items[item].append(ratings[other][item][purpose]) avg_scores = [(sum(items[item]) / len(items[item]), item) for item in items] logging.info("avg_scores: " + str(len(avg_scores))) filters = {'purpose': purpose, 'user': user_id} if places is not None: filters['places'] = place_ids user_ratings = Rating.get_list(filters) logging.info("Loaded user ratings: " + str(len(user_ratings))) if scores is None: scores = [] for value, key in avg_scores: toadd = True for ur in user_ratings: if value < 3.0: #skip this place, too low rating toadd = False continue if key == ur.place.urlsafe() and ur.value < 3.0: #skip this place, user doesn't like it toadd = False continue for svalue, skey in scores: if key == skey: #already in list because of cluster toadd = False break if toadd: scores.append((value, key)) logging.info("Appending place with value " + str(value)) if len(scores) >= n: # we have enough recommended places break scores = sorted(scores, key=lambda x: x[0], reverse = True) if len(scores) > n: scores = scores[0:n] # if debug: # log_text = "RECOMMEND scores from average-based : " # if scores is None: # log_text += "None" # else: # log_text += str(len(scores)) # logging.info(log_text) # # if scores is None or (len(scores) < n and len(scores) < len(places)): # # cluster-based and average recommendations both failed to fill the recommendation list # # just add some other places # for p in places: # in_list = False # for score, key in scores: # if key == p['key']: # in_list = True # break # if not in_list: # scores.append((0, p['key'])) # if len(scores) >= n: # # we have enough recommended places # break # # if debug: # log_text = "RECOMMEND final scores : " # if scores is None: # log_text += "None" # else: # log_text += str(len(scores)) # logging.info(log_text) logging.warning("Filling empty space with full average predictions: " + str(datetime.now() - start)) start = datetime.now() places_scores = [] for p in places: # found = False for (score, item) in scores: if item == p['key']: places_scores.append((score, p)) # found = True # if not found: # places_scores.append((0, p)) logging.info('places_scores: ' + str(len(places_scores))) places_scores = sorted(places_scores, key=lambda x: x[0], reverse = True) logging.warning("Moving mapping from place ids to full place data: " + str(datetime.now() - start)) if len(places_scores) > n: places_scores = places_scores[0:n] # logging.info('recommender.recommend - places_scores: ' + str(places_scores)) items = [] start = datetime.now() for (score, place) in places_scores: #TODO: make discount loading asynchronous in javascript page, after visualization of places!!! disc_filters = {'place': place['key'], 'published': 'True', 'passed': 'False'} discounts, status, errcode = logic.discount_list_get(disc_filters, user_id) logging.info("discounts loaded: " + str(errcode) + " - " + status) if discounts is not None and status == "OK": try: json_discounts = [Discount.to_json(d, None, None) for d in discounts] place['discounts'] = json_discounts except (TypeError, ValueError) as e: #do nothing logging.error('Discounts not loaded: ' + str(e)) pass place['predicted'] = score items.append(place) logging.warning("Time for loading discounts: " + str(datetime.now() - start)) # logging.info("Recommended items: " + str(items)) logging.info("recommender.recommend END ")#- items: " + str(items)) return items