示例#1
0
def linear_test():
    X, y = make_regression(n_features=1, noise=20, random_state=1234)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.33,
                                                        random_state=1234)

    lr = LinearRegression()
    lr.fit(X_train, y_train)
    y_pred = lr.predict(X_test)

    plt.figure(1, figsize=(5, 4))
    plt.scatter(X_test, y_test, c="black")
    plt.plot(X_test, lr.theta * X_test + lr.bias, linewidth=1, c="red")
    plt.axhline(0.5, color=".5")

    plt.ylabel("y")
    plt.xlabel("X")
    plt.legend(
        ("Linear Regression Model", ),
        loc="lower right",
        fontsize="small",
    )
    plt.tight_layout()
    plt.show()
def one_hot_regression(proc, data):
    """
		linear regression using a one hot representation
		:proc processing object
		:data tuple containing train/test (one hot encoded space)

		return linear regression object
	"""
    print('one hot regression...')
    """ridge and random forest regression"""
    # train and test
    trainOneHotX, trainY, testOneHotX, testY = data

    ######### linear regression #########
    linear_models = 'ridge'
    print('ridge regression with one hot representation...')
    linReg = LinearRegression(model=linear_models)
    linReg.fit(trainOneHotX, trainY)
    preds = linReg.predict(testOneHotX)
    print('test r2 score: ', metrics.r2_score(testY, preds))
    print('test mse: ', metrics.mse(testY, preds))

    return linReg
示例#3
0
def logistic_test():
    n_samples = 100
    np.random.seed(0)
    X_train = np.random.normal(size=n_samples)
    y_train = (X_train > 0).astype(float)
    X_train[X_train > 0] *= 4
    X_train += 0.3 * np.random.normal(size=n_samples)

    X_train = X_train[:, np.newaxis]

    X, y = make_classification(
        n_features=1,
        n_classes=2,
        n_redundant=0,
        n_informative=1,
        n_clusters_per_class=1,
        class_sep=0.75,
        shuffle=True,
        random_state=0,
    )
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.33,
                                                        random_state=0)

    df_test = pd.DataFrame(data=[X_test.flatten(), y_test]).T
    df_test.columns = ["X", "y"]

    lr = LogisticRegression()
    lr.fit(X_train, y_train)
    y_pred = lr.predict(X_test)

    score = [1 if yi == yi_pred else 0 for yi, yi_pred in zip(y_test, y_pred)]
    print(np.sum(score) / len(score))

    # and plot the result
    plt.figure(1, figsize=(4, 3))
    plt.clf()
    plt.scatter(X_train.ravel(), y_train, color="black", zorder=20)

    df_test["loss"] = expit(X_test * lr.theta + lr.bias).ravel()
    df_test = df_test.sort_values("X")
    plt.plot(df_test["X"], df_test["loss"], color="red", linewidth=3)

    ols = LinearRegression()
    ols.fit(X_train, y_train)
    plt.plot(X_test, ols.theta * X_test + ols.bias, linewidth=1)
    plt.axhline(0.5, color=".5")

    plt.ylabel("y")
    plt.xlabel("X")
    plt.xticks(range(-5, 10))
    plt.yticks([0, 0.5, 1])
    plt.ylim(-0.25, 1.25)
    plt.xlim(-2, 2)
    plt.legend(
        ("Logistic Regression Model", "Linear Regression Model"),
        loc="lower right",
        fontsize="small",
    )
    plt.tight_layout()
    plt.show()
示例#4
0
import sys

from models import LinearRegression

try:
    passes = int(sys.argv[1])
    split = float(sys.argv[2])
except:
    print("Using default number of passes and split ratio")
    passes = 2
    split = 0.72
model = LinearRegression('data/iris.data')
model.fit(passes, split)
示例#5
0
def sin_fitting_example():
    # y = sin(x)
    amt_points = 36
    x = np.linspace(0, 360, num=amt_points)
    y = np.sin(x * np.pi / 180.)
    noise = np.random.normal(0, .1, y.shape)
    noisy_y = y + noise

    X_train = x
    y_train = noisy_y

    regression = LinearRegression()

    # linear
    X_linear = np.vstack((X_train, np.ones(len(X_train)))).T
    regression.fit(X_linear, y_train.reshape(-1, 1))
    W_linear = regression.model
    y_linear = W_linear[0] * x + W_linear[1]

    # quadratic
    X_quadratic = np.vstack((np.power(X_train,
                                      2), X_train, np.ones(len(X_train)))).T
    regression.fit(X_quadratic, y_train.reshape(-1, 1))
    W_quadratic = regression.model
    y_quadratic = W_quadratic[0] * np.power(
        x, 2) + W_quadratic[1] * x + W_quadratic[2]

    # cubic
    X_cubic = np.vstack(
        (np.power(X_train, 3), np.power(X_train,
                                        2), X_train, np.ones(len(X_train)))).T
    regression.fit(X_cubic, y_train.reshape(-1, 1))
    W_cubic = regression.model
    y_cubic = W_cubic[0] * np.power(x, 3) + W_cubic[1] * np.power(
        x, 2) + W_cubic[2] * x + W_cubic[3]

    # X10
    X_10 = np.vstack(
        (np.power(X_train, 10), np.power(X_train, 9), np.power(X_train, 8),
         np.power(X_train, 7), np.power(X_train,
                                        6), np.power(X_train,
                                                     5), np.power(X_train, 4),
         np.power(X_train, 3), np.power(X_train,
                                        2), X_train, np.ones(len(X_train)))).T
    regression.fit(X_10, y_train.reshape(-1, 1))
    W_10 = regression.model
    y_10 = W_10[0] * np.power(x, 10) + W_10[1] * np.power(x, 9) + W_10[2] * np.power(x, 8) + \
           W_10[3] * np.power(x, 7) + W_10[4] * np.power(x, 6) + W_10[5] * np.power(x, 5) + \
           W_10[6] * np.power(x, 4) + W_10[7] * np.power(x, 3) + W_10[8] * np.power(x, 2) + \
           W_10[9] * x + W_10[10]

    # PLOTS
    plt.figure()
    plt.subplot(1, 1, 1)
    plt.gca().set_title('Sin(x) - Fitting curves')

    # original
    plt.plot(x, noisy_y, 'o')

    # linear
    plt.plot(x, y_linear, '-')

    # quadratic
    plt.plot(x, y_quadratic, '-')

    # cubic
    plt.plot(x, y_cubic, '-')

    # 10 power
    plt.plot(x, y_10, '-')

    plt.legend(['noisy signal', 'linear', 'quadratic', 'cubic', '10th power'])
    plt.show()
import numpy as np
import matplotlib.pyplot as plt
from dataset_income import Data
from metrics import MSE
from models import ConstantModel, LinearRegression, LinearRegressionWithB
from gradient_descent import stochastic_gradient_descent, gradient_descent, mini_batch_gradient_descent

if __name__ == '__main__':
    dataset = Data(
        r'C:\Users\Lautaro\PycharmProjects\ceia_intro_a_IA\clase_3\ejercicios\data\income.csv'
    )

    X_train, X_test, y_train, y_test = dataset.split(0.8)

    linear_regression = LinearRegression()
    linear_regression.fit(X_train, y_train)
    lr_y_hat = linear_regression.predict(X_test)

    linear_regression_b = LinearRegressionWithB()
    linear_regression_b.fit(X_train, y_train)
    lrb_y_hat = linear_regression_b.predict(X_test)

    constant_model = ConstantModel()
    constant_model.fit(X_train, y_train)
    ct_y_hat = constant_model.predict(X_test)

    mse = MSE()
    lr_mse = mse(y_test, lr_y_hat)
    lrb_mse = mse(y_test, lrb_y_hat)
    ct_mse = mse(y_test, ct_y_hat)
示例#7
0
文件: train.py 项目: tqtifnypmb/ML
import numpy as np

from models import LinearRegression, LinearRegression2
from sklearn import datasets
from sklearn import model_selection
from sklearn import linear_model
from sklearn import metrics

if __name__ == '__main__':
    iris = datasets.load_iris()
    train_x, test_x, train_y, test_y = model_selection.train_test_split(iris.data, iris.target, test_size=0.4)

    regressor = LinearRegression()
    regressor.fit(train_x, train_y)
    pred_y = regressor.predit(test_x)

    acc = metrics.mean_squared_error(test_y, pred_y)
    print(acc)

    regressor2 = LinearRegression2(train_x.shape[1])
    regressor2.fit(train_x, train_y)
    pred_y = regressor2.predict(test_x)

    acc = metrics.mean_squared_error(test_y, pred_y)
    print(acc)