def objective_fn(**kwargs): data_config, nn_config, total_intervals = make_model(**kwargs) df = pd.read_csv('data/all_data_30min.csv') model = Model(data_config=data_config, nn_config=nn_config, data=df, intervals=total_intervals) model.build_nn() history = model.train_nn(indices='random') return np.min(history.history['val_loss'])
if __name__ == "__main__": input_features = [ 'tide_cm', 'wat_temp_c', 'sal_psu', 'air_temp_c', 'pcp_mm', 'pcp3_mm', 'wind_speed_mps', 'rel_hum' ] # column in dataframe to bse used as output/target outputs = ['blaTEM_coppml'] data_config, nn_config, total_intervals = make_model(batch_size=16, lookback=1, inputs=input_features, outputs=outputs, lr=0.0001) df = pd.read_csv('../data/all_data_30min.csv') model = Model(data_config=data_config, nn_config=nn_config, data=df, intervals=total_intervals) model.build_nn() history = model.train_nn(indices='random') y, obs = model.predict(st=0, use_datetime_index=False, marker='.', linestyle='') model.view_model(st=0)