leaf_font_size=12, p=50, **kwargs) df = pd.read_csv('data/cervical_arranged_NORM.csv') gt_labels = ['Biopsy'] y = df.Biopsy.values.astype(np.int32) df = df.drop(gt_labels, 1) X = df.as_matrix().astype(np.float64) model = MultitaskEmbedding(embedding='zero', bypass=False, alpha=0.1, width=10, depth=2) model.fit(X, y) domains = [np.unique(X[:, i]) for i in range(X.shape[1])] impact = np.zeros((X.shape[1], 10)) for ft_orig in range(X.shape[1]): emb = model.get_hidden_representation(X) for value in domains[ft_orig]: Xnew = X.copy() Xnew[:, ft_orig] = value embnew = model.get_hidden_representation(Xnew) impact[ft_orig] = np.maximum(impact[ft_orig],
skf = StratifiedKFold(10, shuffle=False, random_state=42) df = pd.read_csv('data/cervical_arranged_NORM.csv') all_procedures = set(['Hinselmann', 'Schiller', 'Citology']) for gt_labels in list(findsubsets(all_procedures)): gt_labels = list(gt_labels) + ['Biopsy'] print 'Procedures', ' '.join(sorted(list(all_procedures - set(gt_labels)))) y = df.Biopsy.values.astype(np.int32) X = df.drop(gt_labels, 1).as_matrix().astype(np.float64) cv = 3 models = [('Sup', GridSearchCV( MultitaskEmbedding(alpha=1., embedding='raw'), param_grid={ 'depth': [1, 2, 3], 'width': [10, 20], }, scoring='average_precision', cv=cv, )), ('Semi', GridSearchCV( MultitaskEmbedding(alpha=0.01), param_grid={ 'alpha': [0.01, 0.1], 'depth': [1, 2, 3], 'width': [10, 20], 'bypass': [False, True],
ret = metrics.average_precision_score(a, b[:, 1]) if np.isnan(ret): return -np.inf return ret X = pd.read_csv(os.sys.argv[1]).as_matrix() y = X[:, -1] X = X[:, : -1] skf = StratifiedKFold(10, shuffle=False, random_state=42) cv = 3 models = [('Sup', GridSearchCV(MultitaskEmbedding(alpha=1., embedding='raw'), param_grid={'depth': [1, 2, 3], 'width': [10, 20], }, scoring='average_precision', cv=cv, )), ('Semi', GridSearchCV(MultitaskEmbedding(alpha=0.01), param_grid={'alpha': [0.01, 0.1], 'depth': [1, 2, 3], 'width': [10, 20], 'bypass': [False, True], }, scoring='average_precision', cv=cv,
os.sys.setrecursionlimit(100000) skf = StratifiedKFold(10, shuffle=False, random_state=42) df = pd.read_csv('data/cervical_arranged_NORM.csv') all_procedures = set(['Hinselmann', 'Schiller', 'Citology']) gt_labels = ['Biopsy'] y = df.Biopsy.values.astype(np.int32) X = df.drop(gt_labels, 1).as_matrix().astype(np.float64) cv = 3 models = [ ('Unsupervised', GridSearchCV(MultitaskEmbedding(alpha=0.0, bypass=False), param_grid={ 'depth': [1, 2, 3], 'width': [10, 20], }, scoring='average_precision', cv=cv, n_jobs=1)), ('Semi', GridSearchCV(MultitaskEmbedding(alpha=0.01, bypass=False), param_grid={ 'alpha': [0.01, 0.1], 'depth': [1, 2, 3], 'width': [10, 20], }, scoring='average_precision',