示例#1
0
def Train_GACNN(params_dict, chrom_i, args, cfg, log, epoches=20):
    # args = parser()
    # cfg = Config.fromfile(args.config)
    # log = Logger(cfg.PARA.utils_paths.log_path + 'GA_MyCNN' + '_log.txt', level='info')

    log.logger.info('==> Preparing dataset <==')
    cifar10 = Cifar10(batch_size = cfg.PARA.train.batch_size)
    # subtrain_loader, subvalid_loader = cifar10.Download_SubTrain_SubValid()
    # print(len(subtrain_loader), len(subvalid_loader))

    train_loader, valid_loader = cifar10.Download_Train_Valid()
    test_loader = cifar10.Download_Test()

    log.logger.info('==> Loading model <==')
    # net = vgg16()
    net = MyModel(params_dict, chrom_i)
    if torch.cuda.device_count() > 1:
        net = nn.DataParallel(net)
    net.to(device)
    print(net)

    criterion = nn.CrossEntropyLoss().to(device)
    optimizer = optim.SGD(net.parameters(), lr=cfg.PARA.train.lr)   # , momentum=cfg.PARA.train.momentum

    log.logger.info('==> Waiting Train <==')
    loss = train_valid(net=net, dict=params_dict, criterion=criterion, optimizer=optimizer, train_loader=train_loader,
                       valid_loader=valid_loader, args=args, log=log, cfg=cfg, epoches=epoches)

    # log.logger.info("==> Waiting Test <==")
    # # with open(cfg.PARA.utils_paths.checkpoint_path + 'GACNN/' + 'best_net_params.pkl', 'rb') as f:
    # #     best_net_params = pkl.load(f)
    # checkpoint = torch.load(cfg.PARA.utils_paths.checkpoint_path + 'GACNN/' + 'best_ckpt.pth')

    # # 进行测试时,net 和保存的 net 是不一样的,所以需要重新设置 net    可是之前就可以,说明没问题啊。。。奇怪
    # net2 = MyCNN(best_net_params)
    # net2.to(device)
    # net2.load_state_dict(checkpoint['net'])
    # test_acc = test(net=net2, test_loader=test_loader)

    # net.load_state_dict(checkpoint['net'])
    # test_acc = test(net=net, test_loader=test_loader)
    # log.logger.info('Test ACC = {:.5f}'.format(test_acc))
    # log.logger.info('==> One Train & Valid & Test End <==')
    return loss
示例#2
0
def train(dataset_path, lr, epoch, batch_size, scaler_flag, state_name):
    train_loss_curve = []
    best = -1

    # load model
    device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
    model = MyModel()
    model = model.to(device)
    model.train()

    # dataset and dataloader
    full_dataset = Visitor_Dataset(dataset_path, scaler_flag)
    train_dataloader = DataLoader(dataset=full_dataset,
                                  batch_size=batch_size,
                                  shuffle=True)

    # loss function and optimizer
    criterion = RMSLELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)

    # start training
    for e in range(epoch):
        train_loss, train_rmsle = 0.0, 0.0

        print(f'\nEpoch: {e+1}/{epoch}')
        print('-' * len(f'Epoch: {e+1}/{epoch}'))
        # tqdm to disply progress bar
        for inputs, labels in tqdm(train_dataloader):

            # data from data_loader
            inputs = inputs.float().to(device)
            labels = labels.float().to(device)

            outputs = model(inputs)

            # RMSLE Loss
            loss = criterion(outputs, labels)

            # weights update
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # loss and rmsle calculate
            train_loss += loss.item()

        # save the best model weights as .pth file
        train_loss_epoch = sqrt(train_loss / len(full_dataset))

        if best == -1 or train_loss_epoch < best:
            best_loss = train_loss_epoch
            best_epoch = e
            torch.save(model.state_dict(), f'mymodel_{state_name}.pth')

        print(f'Training Loss: {train_loss_epoch:.6f}')

        # save loss and RMSLE every epoch
        train_loss_curve.append(train_loss_epoch)

    # print the best RMSLE
    print(f"Final Training RMSLE Loss = {best_loss:.6f}")

    visualize(value=train_loss_curve,
              title='Train Loss Curve',
              filename=f'rmsle_{state_name}.png')

    return full_dataset
示例#3
0
def train(lr=0.001, epoch=600, batch_size=32):
    train_loss_curve = []
    train_wrmse_curve = []
    valid_loss_curve = []
    valid_wrmse_curve = []
    # load model
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = MyModel()
    model = model.to(device)
    model.train()

    # dataset and dataloader
    # can use torch random_split to create the validation dataset
    dataset = MLDataset()
    train_size = int(0.9 * len(dataset))
    valid_size = len(dataset) - train_size
    train_dataset, valid_dataset = random_split(dataset,
                                                [train_size, valid_size])
    train_dataloader = DataLoader(dataset=train_dataset,
                                  batch_size=batch_size,
                                  shuffle=True)
    valid_dataloader = DataLoader(dataset=valid_dataset,
                                  batch_size=batch_size,
                                  shuffle=True)

    # loss function and optimizer
    # can change loss function and optimizer you want
    criterion = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    best = 100
    # start training
    for e in range(epoch):
        train_loss = 0.0
        train_wrmse = 0.0
        valid_loss = 0.0
        valid_wrmse = 0.0

        print(f'\nEpoch: {e+1}/{epoch}')
        print('-' * len(f'Epoch: {e+1}/{epoch}'))
        # tqdm to disply progress bar
        for inputs, labels in tqdm(train_dataloader):
            # data from data_loader
            inputs = inputs.float().to(device)
            labels = labels.float().to(device)
            outputs = model(inputs)
            # MSE loss and WRMSE
            loss = criterion(outputs, labels)
            wrmse = WRMSE(outputs, labels, device)
            # weights update
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            # loss calculate
            train_loss += loss.item()
            train_wrmse += wrmse
        # =================================================================== #
        # If you have created the validation dataset,
        # you can refer to the for loop above and calculate the validation loss
        for inputs, labels in tqdm(valid_dataloader):
            # data from data_loader
            inputs = inputs.float().to(device)
            labels = labels.float().to(device)
            outputs = model(inputs)
            # MSE loss and WRMSE
            loss = criterion(outputs, labels)
            wrmse = WRMSE(outputs, labels, device)
            # loss calculate
            valid_loss += loss.item()
            valid_wrmse += wrmse

        # =================================================================== #
        # save the best model weights as .pth file
        loss_epoch = train_loss / len(train_dataset)
        wrmse_epoch = math.sqrt(train_wrmse / len(train_dataset))
        valid_loss_epoch = valid_loss / len(valid_dataset)
        valid_wrmse_epoch = math.sqrt(valid_wrmse / len(valid_dataset))
        if valid_wrmse_epoch < best:
            best = valid_wrmse_epoch
            torch.save(model.state_dict(), 'mymodel.pth')
        print(f'Training loss: {loss_epoch:.4f}')
        print(f'Training WRMSE: {wrmse_epoch:.4f}')
        print(f'Valid loss: {valid_loss_epoch:.4f}')
        print(f'Valid WRMSE: {valid_wrmse_epoch:.4f}')
        # save loss and wrmse every epoch
        train_loss_curve.append(loss_epoch)
        train_wrmse_curve.append(wrmse_epoch)
        valid_loss_curve.append(valid_loss_epoch)
        valid_wrmse_curve.append(valid_wrmse_epoch)
    # generate training curve
    visualize(train_loss_curve, valid_loss_curve, 'Train Loss')
    visualize(train_wrmse_curve, valid_wrmse_curve, 'Train WRMSE')
    print("\nBest Validation WRMSE:", best)
示例#4
0
def train(lr=0.001, epoch=200, batch_size=64):
    train_loss_curve = []
    train_wrmse_curve = []
    valid_loss_curve = []
    valid_wrmse_curve = []
    best = 100

    # load model
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = MyModel()
    model = model.to(device)
    model.train()

    # dataset and dataloader
    # load data
    full_dataset = pd.read_csv('train.csv', encoding='utf-8')

    # can use torch random_split to create the validation dataset
    lengths = [
        int(round(len(full_dataset) * 0.8)),
        int(round(len(full_dataset) * 0.2))
    ]
    train_set, valid_set = random_split(full_dataset, lengths)

    train_dataset = MLDataset(full_dataset.iloc[train_set.indices])
    valid_dataset = MLDataset(full_dataset.iloc[valid_set.indices])

    train_dataloader = DataLoader(dataset=train_dataset,
                                  batch_size=batch_size,
                                  shuffle=True)
    valid_dataloader = DataLoader(dataset=valid_dataset,
                                  batch_size=batch_size,
                                  shuffle=False)

    # loss function and optimizer
    # can change loss function and optimizer you want
    criterion = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)

    # start training
    for e in tqdm(range(epoch)):
        train_loss, valid_loss = 0.0, 0.0
        train_wrmse, valid_wrmse = 0.0, 0.0
        print(f'\nEpoch: {e+1}/{epoch}')
        print('-' * len(f'Epoch: {e+1}/{epoch}'))
        # tqdm to disply progress bar
        for inputs, labels in train_dataloader:
            # data from data_loader
            inputs = inputs.float().to(device)
            labels = labels.float().to(device)

            outputs = model(inputs)

            # MSE loss and WRMSE
            loss = criterion(outputs, labels)
            wrmse = WRMSE(outputs, labels, device)

            # weights update
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # loss calculate
            train_loss += loss.item()
            train_wrmse += wrmse
        # =================================================================== #
        # If you have created the validation dataset,
        # you can refer to the for loop above and calculate the validation loss
        # tqdm to disply progress bar
        for inputs, labels in valid_dataloader:
            # data from data_loader
            inputs = inputs.float().to(device)
            labels = labels.float().to(device)

            outputs = model(inputs)

            # MSE loss and WRMSE
            loss = criterion(outputs, labels)
            wrmse = WRMSE(outputs, labels, device)

            # loss calculate
            valid_loss += loss.item()
            valid_wrmse += wrmse

        # =================================================================== #
        # save the best model weights as .pth file
        train_loss_epoch = train_loss / len(train_dataset)
        train_wrmse_epoch = math.sqrt(train_wrmse / len(train_dataset))
        valid_loss_epoch = valid_loss / len(valid_dataset)
        valid_wrmse_epoch = math.sqrt(valid_wrmse / len(valid_dataset))

        if train_wrmse_epoch < best:
            best_wrmse = train_wrmse_epoch
            best_loss = train_loss_epoch
            best_epoch = e
            torch.save(model.state_dict(), 'mymodel.pth')

        print(f'Training loss: {train_loss_epoch:.6f}')
        print(f'Training WRMSE: {train_wrmse_epoch:.6f}')
        print(f'Valid loss: {valid_loss_epoch:.6f}')
        print(f'Valid WRMSE: {valid_wrmse_epoch:.6f}')

        # save loss and wrmse every epoch
        train_loss_curve.append(train_loss_epoch)
        train_wrmse_curve.append(train_wrmse_epoch)
        valid_loss_curve.append(valid_loss_epoch)
        valid_wrmse_curve.append(valid_wrmse_epoch)

    # print the best wrmse
    print(f"\nBest Epoch = {best_epoch}")
    print(f"Best Loss = {best_loss:.4f}")
    print(f"Best WRMSE = {best_wrmse:.4f}\n")

    # generate training curve
    visualize(train=train_loss_curve,
              valid=valid_loss_curve,
              title='Loss Curve',
              filename='loss.png',
              best=(e, best_loss))
    visualize(train_wrmse_curve,
              valid_wrmse_curve,
              title='WRMSE Curve',
              filename='wrmse.png',
              best=(e, best_wrmse),
              wrmse=True)
def main():
    _i, _j, _k = 2,3,3
    dataset = MyDataset(_i,_j,_k)

    dtype = torch.float
    device = torch.device("cpu")
    # device = torch.device("cuda:0")

    #batch, input, hidden, output
    N, D_in, H, D_out = 10, _i+_j+_k, 16, _i*_j*_k
    msg_len = 10

    x, y = dataset.get_frame()
    x = torch.tensor(x, dtype=dtype, device=device)
    #x = torch.cat((x,x,x,x,x),0)
    y = torch.tensor(y, dtype=torch.long, device=device).squeeze()
    #y = torch.cat((y,y,y,y,y),0)
    print(x.size(), y.size())
    #x = torch.zeros(N, D_in, device=device, dtype=dtype)
    #y = torch.zeros(N, device=device, dtype=dtype)

    model = MyModel(D_in, H, D_out)
    #model = torch.nn.Linear(D_in, D_out)

    loss_fn = torch.nn.CrossEntropyLoss(reduce=None)
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)

    for t in range(10001):
        if True: #reinforce
            y_pred = model(x)
            probs = F.softmax(y_pred, dim=1)
            m = Categorical(probs)
            action = m.sample()
            reward = torch.eq(action, y).to(torch.float)
            reward = (reward - reward.mean())
            loss = -m.log_prob(action) * reward
            model.zero_grad()
            loss.sum().backward()
            #loss.backward(loss)
            optimizer.step()
        
        elif True:
            y_pred = model(x)
        
        else: # supervised
            y_pred = model(x)
            loss = loss_fn(y_pred, y)
            model.zero_grad()
            loss.backward()
            optimizer.step()

        if t % 100 == 0:
            with torch.no_grad():
                y_pred = model(x)
                eq = torch.eq(torch.argmax(y_pred, dim=1), y)
                print("t: {}, acc: {}/{} = {}".format(t, torch.sum(eq).item(), eq.numel(), torch.sum(eq).item() / eq.numel()))


        torch.save({'epoch': t,
                    'model_state_dict': model.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'loss': loss
                    }, "checkpoints.tar")
def train(
        batch_size=16,
        pretrain_model_path='',
        name='',
        model_type='mlp',
        after_bert_choice='last_cls',
        dim=1024,
        lr=1e-5,
        epoch=12,
        smoothing=0.05,
        sample=False,
        #open_ad='',
        dialog_name='xxx'):

    if not pretrain_model_path or not name:
        assert 1 == -1

    print('\n********** model type:', model_type, '**********')
    print('batch_size:', batch_size)

    # load dataset
    train_file = '/kaggle/input/dataset/my_train.csv'
    dev_file = '/kaggle/input/dataset/my_dev.csv'

    train_num = len(pd.read_csv(train_file).values.tolist())
    val_num = len(pd.read_csv(dev_file).values.tolist())
    print('train_num: %d, dev_num: %d' % (train_num, val_num))

    # 选择模型
    if model_type in ['siam', 'esim', 'sbert']:
        assert 1 == -1

    else:
        train_iter = MyDataset(file=train_file,
                               is_train=True,
                               sample=sample,
                               pretrain_model_path=pretrain_model_path)
        train_iter = get_dataloader(train_iter,
                                    batch_size,
                                    shuffle=True,
                                    drop_last=True)
        dev_iter = MyDataset(file=dev_file,
                             is_train=True,
                             sample=sample,
                             pretrain_model_path=pretrain_model_path)
        dev_iter = get_dataloader(dev_iter,
                                  batch_size,
                                  shuffle=False,
                                  drop_last=False)

        if model_type == 'mlp':
            model = MyModel(dim=dim,
                            pretrain_model_path=pretrain_model_path,
                            smoothing=smoothing,
                            after_bert_choice='last_cls')

        elif model_type == 'cnn':
            model = MyTextCNNModel(dim=dim,
                                   pretrain_model_path=pretrain_model_path,
                                   smoothing=smoothing)

        elif model_type == 'rcnn':
            model = MyRCNNModel(dim=dim,
                                pretrain_model_path=pretrain_model_path,
                                smoothing=smoothing)

    #模型加载到gpu
    model.to(device)
    model_param_num = 0

    ##### 3.24 muppti-gpu-training
    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    for p in model.parameters():
        if p.requires_grad:
            model_param_num += p.nelement()
    print('param_num:%d\n' % model_param_num)

    # 加入对抗训练,提升泛化能力;但是训练速度明显变慢 (插件式调用)
    # 3.12 change to FGM 更快!
    """
    if open_ad == 'fgm':
        fgm = FGM(model)
    elif open_ad == 'pgd':
        pgd = PGD(model)
        K = 3
    """
    # model-store-path
    #model_path = '/kaggle/output/' + name + '.pkl' # 输出模型默认存放在当前路径下
    output_dir = 'output'
    state = {}
    time0 = time.time()
    best_loss = 999
    early_stop = 0
    for e in range(epoch):
        print("*" * 100)
        print("Epoch:", e)
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=lr,
                             warmup=0.05,
                             t_total=len(train_iter))  # 设置优化器
        train_loss = 0
        train_c = 0
        train_right_num = 0

        model.train()  # 将模型设置成训练模式(Sets the module in training mode)
        print('training..., %s, e:%d, lr:%7f' % (name, e, lr))
        for batch in tqdm(train_iter):  # 每一次返回 batch_size 条数据

            optimizer.zero_grad()  # 清空梯度
            batch = [b.to(device) for b in batch]  # cpu -> GPU

            # 正常训练
            labels = batch[-1].view(-1).cpu().numpy()
            loss, bert_enc = model(batch, task='train',
                                   epoch=epoch)  # 进行前向传播,真正开始训练;计算 loss
            right_num = count_right_num(bert_enc, labels)

            # multi-gpu training!
            if n_gpu > 1:
                loss = loss.mean()

            loss.backward()  # 反向传播计算参数的梯度

            #"""
            if open_ad == 'fgm':
                # 对抗训练
                fgm.attack()  # 在embedding上添加对抗扰动

                if model_type == 'multi-task':
                    loss_adv, _, _ = model(batch, task='train')
                else:
                    loss_adv, _ = model(batch, task='train')

                if n_gpu > 1:
                    loss_adv = loss_adv.mean()

                loss_adv.backward()  # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
                fgm.restore()  # 恢复embedding参数

            elif open_ad == 'pgd':
                pgd.backup_grad()
                # 对抗训练
                for t in range(K):
                    pgd.attack(is_first_attack=(
                        t == 0
                    ))  # 在embedding上添加对抗扰动, first attack时备份param.data
                    if t != K - 1:
                        optimizer.zero_grad()
                    else:
                        pgd.restore_grad()

                    if model_type == 'multi-task':
                        loss_adv, _, _ = model(batch, task='train')
                    else:
                        loss_adv, _ = model(batch, task='train')

                    if n_gpu > 1:
                        loss_adv = loss_adv.mean()

                    loss_adv.backward()  # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
                pgd.restore()  # 恢复embedding参数
            #"""
            optimizer.step()  # 更新参数

            train_loss += loss.item()  # loss 求和
            train_c += 1
            train_right_num += right_num

        val_loss = 0
        val_c = 0
        val_right_num = 0

        model.eval()
        print('eval...')
        with torch.no_grad():  # 不进行梯度的反向传播
            for batch in tqdm(dev_iter):  # 每一次返回 batch_size 条数据
                batch = [b.to(device) for b in batch]

                labels = batch[-1].view(-1).cpu().numpy()
                loss, bert_enc = model(batch, task='train',
                                       epoch=epoch)  # 进行前向传播,真正开始训练;计算 loss
                right_num = count_right_num(bert_enc, labels)

                if n_gpu > 1:
                    loss = loss.mean()

                val_c += 1
                val_loss += loss.item()
                val_right_num += right_num

        train_acc = train_right_num / train_num
        val_acc = val_right_num / val_num

        print('train_acc: %.4f, val_acc: %.4f' % (train_acc, val_acc))
        print('train_loss: %.4f, val_loss: %.4f, time: %d' %
              (train_loss / train_c, val_loss / val_c, time.time() - time0))

        if val_loss / val_c < best_loss:
            early_stop = 0
            best_loss = val_loss / val_c
            best_acc = val_acc

            # 3.24 update 多卡训练时模型保存避坑:
            if not os.path.exists(output_dir):
                os.makedirs(output_dir)

            model_to_save = model.module if hasattr(model, 'module') else model
            state['model_state'] = model_to_save.state_dict()
            state['loss'] = val_loss / val_c
            state['acc'] = val_acc
            state['e'] = e
            state['time'] = time.time() - time0
            state['lr'] = lr

            output_model_file = os.path.join(output_dir, name + '.pkl')
            torch.save(state, output_model_file)
            #torch.save(state, model_path)

            best_epoch = e
            cost_time = time.time() - time0
            tmp_train_acc = train_acc
            best_model = model

        else:
            early_stop += 1
            if early_stop == 2:
                break

            model = best_model
            lr = lr * 0.5
        print("best_loss:", best_loss)

    # 3.12 add 打印显示最终的最优结果
    print('-' * 30)
    print('best_epoch:', best_epoch, 'best_loss:', best_loss, 'best_acc:',
          best_acc, 'reach time:', cost_time, '\n')

    # model-clean
    del model
    gc.collect()

    # 实验结果写入日志
    """