print(args.__dict__) if not os.path.exists(args.checkpoint_dir) and args.to_log == 1: os.makedirs(args.checkpoint_dir) os.makedirs(args.log_dir) if args.model_type == 'pacman': model_kwargs = {'question_vocab': load_vocab(args.vocab_json)} shared_model = NavPlannerControllerModel(**model_kwargs) else: exit() shared_model.share_memory() if args.checkpoint_path != False: print('Loading params from checkpoint: %s' % args.checkpoint_path) shared_model.load_state_dict(checkpoint['state']) if args.mode == 'eval': eval(0, args, shared_model) elif args.mode == 'train': train(0, args, shared_model) else:
print(args.__dict__) if not os.path.exists(args.checkpoint_dir) and args.to_log == 1: os.makedirs(args.checkpoint_dir) os.makedirs(args.log_dir) if args.model_type == 'pacman': model_kwargs = {'question_vocab': load_vocab(args.vocab_json)} shared_nav_model = NavPlannerControllerModel(**model_kwargs) else: exit() shared_nav_model.share_memory() print('Loading navigation params from checkpoint: %s' % args.nav_checkpoint_path) shared_nav_model.load_state_dict(checkpoint['state']) # Load answering model print('Loading answering checkpoint from %s' % args.ans_checkpoint_path) ans_checkpoint = torch.load(args.ans_checkpoint_path, map_location={'cuda:0': 'cpu'}) ans_model_kwargs = {'vocab': load_vocab(args.vocab_json)} shared_ans_model = VqaLstmCnnAttentionModel(**ans_model_kwargs) shared_ans_model.share_memory()
print(args.__dict__) if not os.path.exists(args.checkpoint_dir) and args.to_log == 1: os.makedirs(args.checkpoint_dir) os.makedirs(args.log_dir) if args.model_type == 'pacman': model_kwargs = {'question_vocab': load_vocab(args.vocab_json)} shared_nav_model = NavPlannerControllerModel(**model_kwargs) else: exit() shared_nav_model.share_memory() print('Loading navigation params from checkpoint: %s' % args.nav_checkpoint_path) shared_nav_model.load_state_dict(checkpoint['state']) # Load answering model print('Loading answering checkpoint from %s' % args.ans_checkpoint_path) ans_checkpoint = torch.load( args.ans_checkpoint_path, map_location={ 'cuda:0': 'cpu' }) ans_model_kwargs = {'vocab': load_vocab(args.vocab_json)} shared_ans_model = VqaLstmCnnAttentionModel(**ans_model_kwargs)