示例#1
0
def test_one_image(args, dt_config, dataset_class):
    input_size = (475, 475)
    model_path = args.snapshot
    dataset_instance = dataset_class(data_path=dt_config.DATA_PATH)
    num_classes = dataset_instance.num_classes
    model = PSPNet(num_classes=num_classes)
    model.load_state_dict(torch.load(model_path)["state_dict"])
    model.eval()

    img = cv2.imread(args.image_path)
    processed_img = cv2.resize(img, input_size)
    overlay = np.copy(processed_img)
    processed_img = processed_img / 255.0
    processed_img = torch.tensor(
        processed_img.transpose(2, 0, 1)[np.newaxis, :]).float()
    if torch.cuda.is_available():
        model = model.cuda()
        processed_img = processed_img.cuda()
    output = model(processed_img)[0]
    mask = output.data.max(1)[1].cpu().numpy().reshape(475, 475)
    color_mask = np.array(dataset_instance.colors)[mask]
    alpha = args.alpha
    overlay = (((1 - alpha) * overlay) + (alpha * color_mask)).astype("uint8")
    overlay = cv2.resize(overlay, (img.shape[1], img.shape[0]))
    cv2.imwrite("result.jpg", overlay)
示例#2
0
def main():
    args = parse_arguments()

    # Dataset used for training the model
    MEAN = [0.45734706, 0.43338275, 0.40058118]
    STD = [0.23965294, 0.23532275, 0.2398498]

    to_tensor = transforms.ToTensor()
    normalize = transforms.Normalize(MEAN, STD)
    num_classes = 2
    palette = [0, 0, 0, 128, 0, 128]

    # Model
    model = PSPNet(num_classes=num_classes, backbone='resnet18')
    availble_gpus = list(range(torch.cuda.device_count()))
    device = torch.device('cuda:0' if len(availble_gpus) > 0 else 'cpu')

    checkpoint = torch.load(args.model)
    if isinstance(checkpoint, dict) and 'state_dict' in checkpoint.keys():
        checkpoint = checkpoint['state_dict']
    if 'module' in list(checkpoint.keys())[0] and not isinstance(
            model, torch.nn.DataParallel):
        model = torch.nn.DataParallel(model)
    model.load_state_dict(checkpoint)
    model.to(device)
    model.eval()

    if not os.path.exists('outputs'):
        os.makedirs('outputs')

    image_files = sorted(glob(os.path.join(args.images,
                                           f'*.{args.extension}')))
    with torch.no_grad():
        tbar = tqdm(image_files, ncols=100)
        for img_file in tbar:
            image = Image.open(img_file).convert('RGB')
            image = image.resize((480, 320))
            input = normalize(to_tensor(image)).unsqueeze(0)
            print(input.size())
            t1 = time.time()
            prediction = model(input.to(device))
            prediction = prediction.squeeze(0).cpu().numpy()
            print(time.time() - t1)
            prediction = F.softmax(torch.from_numpy(prediction),
                                   dim=0).argmax(0).cpu().numpy()
            save_images(image, prediction, args.output, img_file, palette)
示例#3
0
def main():
    batch_size = 8

    net = PSPNet(pretrained=False, num_classes=num_classes, input_size=(512, 1024)).cuda()
    snapshot = 'epoch_48_validation_loss_5.1326_mean_iu_0.3172_lr_0.00001000.pth'
    net.load_state_dict(torch.load(os.path.join(ckpt_path, snapshot)))
    net.eval()

    mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    transform = transforms.Compose([
        expanded_transform.FreeScale((512, 1024)),
        transforms.ToTensor(),
        transforms.Normalize(*mean_std)
    ])
    restore = transforms.Compose([
        expanded_transform.DeNormalize(*mean_std),
        transforms.ToPILImage()
    ])

    lsun_path = '/home/b3-542/LSUN'

    dataset = LSUN(lsun_path, ['tower_val', 'church_outdoor_val', 'bridge_val'], transform=transform)
    dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=16, shuffle=True)

    if not os.path.exists(test_results_path):
        os.mkdir(test_results_path)

    for vi, data in enumerate(dataloader, 0):
        inputs, labels = data
        inputs = Variable(inputs, volatile=True).cuda()
        outputs = net(inputs)

        prediction = outputs.cpu().data.max(1)[1].squeeze_(1).numpy()

        for idx, tensor in enumerate(zip(inputs.cpu().data, prediction)):
            pil_input = restore(tensor[0])
            pil_output = colorize_mask(tensor[1])
            pil_input.save(os.path.join(test_results_path, '%d_img.png' % (vi * batch_size + idx)))
            pil_output.save(os.path.join(test_results_path, '%d_out.png' % (vi * batch_size + idx)))
            print 'save the #%d batch, %d images' % (vi + 1, idx + 1)