def test_model_with_softmax():
    from models import Sequential
    from layers import Linear, Softmax

    inputs = np.array([[0.25, 0.63, 0.12]])
    targets = np.array([0, 1, 0])

    model = Sequential()
    model.add(Linear(3, 3, activation=Softmax()))
    predictions = model.feed_forward(inputs)
    loss = ce.loss(predictions, targets)
    for i in range(len(predictions)):
        gradient = ce.backward(predictions[i], targets[i])
        print("grad", gradient)
示例#2
0
def load_model(name):
    type_map = {
        "<class 'layers.SimpleRecurrent'>": SimpleRecurrent,
        "<class 'layers.VanillaRecurrent'>": VanillaRecurrent,
        "<class 'layers.Dense'>": Dense,
        "<class 'layers.Activation'>": Activation,
        "<class 'layers.Softmax'>": Softmax
    }

    with open('{}_network.json'.format(name), 'r') as infile:
        network = json.load(infile)

    shallow_params_dict = np.load('{}.npz'.format(name))
    params_dict = {}

    for k, v in shallow_params_dict.items():
        sep_ind = k.find('__')
        layer_ind = int(k[k.find('_') + 1:sep_ind])
        param_key = k[sep_ind + 2:]

        if layer_ind not in params_dict:
            params_dict[layer_ind] = {}

        params_dict[layer_ind][param_key] = v

    model = Sequential()

    layer_types = network['layer_types']
    layer_configs = network['layer_configs']

    for i in range(len(layer_types)):
        lt = type_map[layer_types[i]]
        config = layer_configs[i]

        layer = lt(**config)

        if layer.trainable:
            layer.set_params_from_dict(params_dict[i])

        model.add(layer)

    return model
示例#3
0
def main():
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    print 'Imported MNIST data: training input %s and training labels %s.' % (
        x_train.shape, y_train.shape)
    print 'Imported MNIST data: test input %s and test labels %s.' % (
        x_test.shape, y_test.shape)

    N, H, W = x_train.shape
    x = x_train.reshape((N, H * W)).astype('float') / 255
    y = to_categorical(y_train, num_classes=10)

    model = Sequential()
    model.add(Dense(), ReLU(), layer_dim=(28 * 28, 300), weight_scale=1e-2)
    model.add(Dense(), ReLU(), layer_dim=(300, 100), weight_scale=1e-2)
    model.add(Dense(), Softmax(), layer_dim=(100, 10), weight_scale=1e-2)

    model.compile(optimizer=GradientDescent(learning_rate=1e-2),
                  loss_func=categorical_cross_entropy)
    model.fit(x, y, epochs=10, batch_size=50, verbose=False)

    N, H, W = x_test.shape
    x = x_test.reshape((N, H * W)).astype('float') / 255
    y = to_categorical(y_test, num_classes=10)

    model.evaluate(x, y)
示例#4
0
y = y[indices]

# Explicitly set apart 10% for validation data that we never train over
split_at = len(X) - len(X) / 10
(X_train, X_val) = (slice_X(X, 0, split_at), slice_X(X, split_at))
(y_train, y_val) = (y[:split_at], y[split_at:])

print(X_train.shape)
print(y_train.shape)

print("Build model...")
model = Sequential()
# "Encode" the input sequence using an RNN, producing an output of HIDDEN_SIZE
# note: in a situation where your input sequences have a variable length,
# use input_shape=(None, nb_feature).
model.add(RNN(HIDDEN_SIZE, input_shape=(MAXLEN, convertor.get_dim())))
# For the decoder's input, we repeat the encoded input for each time step
model.add(RepeatVector(DIGITS + 1))
# The decoder RNN could be multiple layers stacked or a single keras_layer
for _ in range(LAYERS):
    model.add(RNN(HIDDEN_SIZE, return_sequences=True))

# For each of step of the output sequence, decide which character should be chosen
model.add(TimeDistributedDense(convertor.get_dim()))
model.add(Activation("softmax"))

model.compile(loss="categorical_crossentropy", optimizer="adam")

# Train the model each generation and show predictions against the validation dataset
for iteration in range(1, 200):
    print()
示例#5
0
img_rows = 28
img_cols = 28
input_shape = (1, img_rows, img_cols)
(train_x, train_y), (test_x, test_y) = mnist.load_data()
train_x = np.reshape(train_x, (len(train_x), 1, img_rows, img_cols)).astype(skml_config.config.i_type)
train_y = convert_to_one_hot(train_y, num_classes)
test_x = np.reshape(test_x, (len(test_x), 1, img_rows, img_cols)).astype(skml_config.config.i_type)
test_y = convert_to_one_hot(test_y, num_classes)

train_x, valid_x, train_y, valid_y = train_test_split(train_x, train_y)


filters = 64
model = Sequential()
model.add(Convolution(filters, 3, input_shape=input_shape))
model.add(BatchNormalization())
model.add(ReLU())
model.add(MaxPooling(2))
model.add(Convolution(filters, 3))
model.add(BatchNormalization())
model.add(ReLU())
model.add(GlobalAveragePooling())
model.add(Affine(num_classes))
model.compile(SoftmaxCrossEntropy(), Adam())

train_batch_size = 100
valid_batch_size = 1
print("訓練開始: {}".format(datetime.now().strftime("%Y/%m/%d %H:%M")))
model.fit(train_x, train_y, train_batch_size, 20, validation_data=(valid_batch_size, valid_x, valid_y), validation_steps=1)
print("訓練終了: {}".format(datetime.now().strftime("%Y/%m/%d %H:%M")))
示例#6
0
from models import Sequential, compute_loss
from layers import Layer

min_loss = 100
best_model = None

EPOCHS = 12
from random import uniform

while min_loss > 6.25:
    model = Sequential()
    first_layer = Layer(4, "sigmoid")
    model.add(first_layer)
    second_layer = Layer(5, "sigmoid")
    model.add(second_layer)
    third_layer = Layer(4, "softmax")
    model.add(third_layer)
    model.compile()

    loss = 0

    for i in range(EPOCHS):
        inpt = (uniform(-1, 1), uniform(-1, 1), uniform(-1, 1), uniform(-1, 1))
        expected_output = [1 if n == max(inpt) else 0 for n in inpt]
        output = model.run(inpt)
        loss += compute_loss(output, expected_output)

    if loss < min_loss:
        best_model = model
        min_loss = loss
        print("Loss is: " + str(loss))
示例#7
0
bias_weights_0 = np.array([-5, 5])
kernel_weights_0 = np.array([[5, -5],
                             [5, -5]])

bias_weights_1 = np.array([-5])
kernel_weights_1 = np.array([[5],
                             [5]])

saved_bias_0 = saved_weights(bias_weights_0)
saved_kernel_0 = saved_weights(kernel_weights_0)

saved_bias_1 = saved_weights(bias_weights_1)
saved_kernel_1 = saved_weights(kernel_weights_1)

model = Sequential()
model.add(Dense(2, 2, kernel_initializer=saved_kernel_0, bias_initializer=saved_bias_0, alpha=50.0))
model.add(Sigmoid())
model.add(Dense(1, 2, kernel_initializer=saved_kernel_1, bias_initializer=saved_bias_1, alpha=50.0))
model.add(Sigmoid())

X = np.array([[0, 0],
              [0, 1],
              [1, 0],
              [1, 1]])
y = np.array([[1],
              [0],
              [0],
              [1]])

print("Prediction")
p = model.predict(X)
示例#8
0
from layers import Dense
from layers import Sigmoid
from models import Sequential
from initializers import saved_weights
from metrics import SquaredError
import matplotlib.pyplot as plt

kernel_weights = np.array([[0, 0],
                           [0, 0]])
bias_weights = np.array([0, 0])

saved_kernel = saved_weights(kernel_weights)
saved_bias = saved_weights(bias_weights)

model = Sequential()
model.add(Dense(2, 2, kernel_initializer=saved_kernel, bias_initializer=saved_bias, alpha=0.5))
model.add(Sigmoid())

X = np.array([[0, 0],
              [0, 1],
              [1, 0],
              [1, 1]])
y = np.array([[0, 1],
              [1, 0],
              [1, 0],
              [1, 0]])

print("Prediction")
p = model.predict(X)
print(p)
print("Error")
示例#9
0
    else:
        sys.stdout.write('ETA: ' + seconds_to_string(remaining))

    # Output padding
    sys.stdout.write(' ' * 20)
    # Allow progress bar to persist if it's complete
    if current == total:
        sys.stdout.write('\n')
    # Flush to standard out
    sys.stdout.flush()
    # Return the time of the progress update
    return time.time()


model = Sequential()
model.add(Input(2))
model.add(Dense(25))
model.add(Activation("relu"))
model.add(Dense(50))
model.add(Activation("relu"))
model.add(Dense(50))
model.add(Activation("relu"))
model.add(Dense(25))
model.add(Activation("relu"))
model.add(Dense(1))
model.add(Activation("sigmoid"))


def initialise_layer_parameters(seed=2):
    # random seed initiation
    np.random.seed(seed)
示例#10
0
    """
    mndata = MNIST('./samples')
    images, labels = mndata.load_training()

    vocab = set()
    for label in labels:
        vocab.add(label)
    vocab = sorted(vocab)
    Y = []
    for label in labels:
        one_hot = [0] * len(vocab)
        one_hot[label] = 1
        Y.append(one_hot)
    X = np.array(images).T / 255
    Y = np.array(Y).T
    return (X, Y)


X, Y = parse_data()

model = Sequential()
model.add(Dense(1024, n_inputs=X.shape[0]))
model.add(Dense(1024))
model.add(Dense(1024))
model.add(Dense(Y.shape[0], activation='sigmoid'))
model.compile()

# model = pickle.load(open('model.p', 'rb'))

model.fit(X, Y, 1, learning_rate=0.003)
示例#11
0
num_labels = 10
image_pixels = image_size**2

with open("pickled_mnist.pkl", "br") as fh:
    data = pickle.load(fh)

train_imgs = data[0]
test_imgs = data[1]
train_labels = data[2]
test_labels = data[3]
train_labels_one_hot = data[4]
test_labels_one_hot = data[5]

model = Sequential()
model.add(
    Dense(16, 784, kernel_initializer=truncated_normal,
          bias_initializer=zeros))
model.add(Sigmoid())
model.add(
    Dense(10, 16, kernel_initializer=truncated_normal, bias_initializer=zeros))
model.add(Sigmoid())

loss = SquaredError()

loss_history = model.fit(train_imgs,
                         train_labels_one_hot,
                         batch_size=32,
                         epochs=10,
                         loss=loss,
                         halt=False)
pred = model.predict(test_imgs)
    return x, x.shape[1], t, 1


#irisからデータを生成
#x, inputs_shape, t, outputs_shape = create_data_category()
#loss   = "categorical_crossentropy"
#metric = "accuracy"
#last_layer_activation = "softmax"
x, inputs_shape, t, outputs_shape = create_data_numeric(3)
loss = "mean_squared_error"
metric = "rmse"
last_layer_activation = "identify"

seed = 15
model = Sequential(seed=seed)
model.add(Dense(10, activation="relu", inputs_shape=inputs_shape))
model.add(Dense(10, activation="relu"))
model.add(Dense(outputs_shape, activation=last_layer_activation))
model.compile(loss=loss, optimizer=Adam(), metric=metric)

train_x, test_x, train_t, test_t = train_test_split(x,
                                                    t,
                                                    test_size=0.3,
                                                    random_state=seed)
model.fit(train_x, train_t, test_x, test_t, epochs=1000, batch_size=50)

#誤差をプロット
import matplotlib.pyplot as plt

plt.plot(model.history_train[0])
plt.plot(model.history_test[0])
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = (x_train.astype('float32') / 255).reshape(-1, 1, 28, 28)
y_train = np_utils.to_categorical(y_train.astype('int32'), 10)
x_test = (x_test.astype('float32') / 255).reshape(-1, 1, 28, 28)
y_test = np_utils.to_categorical(y_test.astype('int32'), 10)

threshold = 1000
x_train = x_train[:threshold]
y_train = y_train[:threshold]
x_test = x_test[:threshold]
y_test = y_test[:threshold]

seed = 15
model = Sequential(seed=seed)
model.add(Conv2D(32, (5, 5), activation="relu",
                 inputs_shape=x_train.shape[1:]))
model.add(Pooling((2, 2)))
model.add(Conv2D(16, (3, 3), activation="relu"))
model.add(Pooling((2, 2)))
model.add(Dense(10, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation="softmax"))
model.compile(loss="categorical_crossentropy",
              optimizer=Adam(),
              metric="accuracy")

model.fit(x_train=x_train,
          t_train=y_train,
          x_test=x_test,
          t_test=y_test,
          batch_size=128,
示例#14
0
num_episodes = 1000
num_steps = 200
success_steps = 100
reward_fail = -1
reward_success = 1
reward_none = 0

env = gym.make("CartPole-v0")
env = wrappers.Monitor(env, "videos", (lambda ep: ep % 100 == 0), True)
num_actions = env.action_space.n
num_observations = env.observation_space.shape[0]

input_shape = (num_observations, )
hidden_size = 32
model = Sequential()
model.add(Affine(hidden_size, input_shape=input_shape))
model.add(ReLU())
model.add(Affine(hidden_size))
model.add(ReLU())
model.add(Affine(hidden_size))
model.add(ReLU())
model.add(Affine(num_actions))
model.compile(MeanSquaredError(), Adam())

explorer = LinearDecayEpsilonGreedy(1.0, 0.0, 500, env.action_space.sample)
replay_buffer = ReplayBuffer(10**6)
agent = DQN(model,
            replay_buffer,
            explorer,
            sync_target_interval=5,
            replay_size=32,