示例#1
0
 def __init__(self):
     super(PhotoWCT, self).__init__()
     self.e1 = VGGEncoder(1)
     self.d1 = VGGDecoder(1)
     self.e2 = VGGEncoder(2)
     self.d2 = VGGDecoder(2)
     self.e3 = VGGEncoder(3)
     self.d3 = VGGDecoder(3)
     self.e4 = VGGEncoder(4)
     self.d4 = VGGDecoder(4)
示例#2
0
    def __init__(self, args):
        super(PhotoWCT, self).__init__()
        self.args = args
        if "16x" in self.args.mode:
            if "JointED" not in self.args.mode:
                ### 16x model trained for pwct
                e1 = '../KD/Experiments/Small16xEncoder_pwct/e1/weights/12-20181020-1610_1SE_E25S0-2.pth'
                e2 = '../KD/Experiments/Small16xEncoder_pwct/e2/weights/12-20181020-1602_2SE_E25S0-2.pth'
                e3 = '../KD/Experiments/Small16xEncoder_pwct/e3/weights/12-20181019-0420_3SE_E25S0-2.pth'
                e4 = '../KD/Experiments/Small16xEncoder_pwct/e4/weights/12-20181019-0349_4SE_E25S0-2.pth'
                d1 = '../KD/Experiments/Small16xDecoder_pwct/e1/weights/12-20181021-0913_1SD_E25S0-3.pth'
                d2 = '../KD/Experiments/Small16xDecoder_pwct/e2/weights/12-20181021-1418_2SD_E25S0-3.pth'
                d3 = '../KD/Experiments/Small16xDecoder_pwct/e3/weights/12-20181020-1638_3SD_E25S0-3.pth'
                d4 = '../KD/Experiments/Small16xDecoder_pwct/e4/weights/12-20181020-1637_4SD_E25S0-3.pth'
            else:
                ### 16x model trained for pwct, JointED
                e1 = '../KD/Experiments/Small16xEncoder_pwct/e1_JointED/weights/12-20181026-0259_1SED_E25S0-2.pth'
                d1 = '../KD/Experiments/Small16xEncoder_pwct/e1_JointED/weights/12-20181026-0259_1SED_E25S0-3.pth'
                e2 = '../KD/Experiments/Small16xEncoder_pwct/e2_JointED/weights/12-20181026-0256_2SED_E25S0-2.pth'
                d2 = '../KD/Experiments/Small16xEncoder_pwct/e2_JointED/weights/12-20181026-0256_2SED_E25S0-3.pth'
                e3 = '../KD/Experiments/Small16xEncoder_pwct/e3_JointED/weights/12-20181026-0255_3SED_E25S0-2.pth'
                d3 = '../KD/Experiments/Small16xEncoder_pwct/e3_JointED/weights/12-20181026-0255_3SED_E25S0-3.pth'
                e4 = '../KD/Experiments/Small16xEncoder_pwct/e4_JointED/weights/12-20181026-0255_4SED_E25S0-2.pth'
                d4 = '../KD/Experiments/Small16xEncoder_pwct/e4_JointED/weights/12-20181026-0255_4SED_E25S0-3.pth'

        if self.args.mode == "" or self.args.mode == "original":
            #### original model
            self.e1 = VGGEncoder(1)
            self.d1 = VGGDecoder(1)
            self.e2 = VGGEncoder(2)
            self.d2 = VGGDecoder(2)
            self.e3 = VGGEncoder(3)
            self.d3 = VGGDecoder(3)
            self.e4 = VGGEncoder(4)
            self.d4 = VGGDecoder(4)
        elif "16x" in self.args.mode:
            self.e1 = SmallEncoder_16x_plus(1, e1)
            self.d1 = SmallDecoder_16x(1, d1)
            self.e2 = SmallEncoder_16x_plus(2, e2)
            self.d2 = SmallDecoder_16x(2, d2)
            self.e3 = SmallEncoder_16x_plus(3, e3)
            self.d3 = SmallDecoder_16x(3, d3)
            self.e4 = SmallEncoder_16x_plus(4, e4)
            self.d4 = SmallDecoder_16x(4, d4)
        else:
            print("wrong mode")
            exit(1)
示例#3
0
if __name__ == '__main__':
    if not os.path.exists('pth_models'):
        os.mkdir('pth_models')
    
    ## VGGEncoder1
    vgg1 = load_lua('models/vgg_normalised_conv1_1_mask.t7')
    e1 = VGGEncoder(1)
    weight_assign(vgg1, e1, {
        'conv0': 0,
        'conv1_1': 2,
    })
    torch.save(e1.state_dict(), 'pth_models/vgg_normalised_conv1.pth')
    
    ## VGGDecoder1
    inv1 = load_lua('models/feature_invertor_conv1_1_mask.t7')
    d1 = VGGDecoder(1)
    weight_assign(inv1, d1, {
        'conv1_1': 1,
    })
    torch.save(d1.state_dict(), 'pth_models/feature_invertor_conv1.pth')
    
    ## VGGEncoder2
    vgg2 = load_lua('models/vgg_normalised_conv2_1_mask.t7')
    e2 = VGGEncoder(2)
    weight_assign(vgg2, e2, {
        'conv0': 0,
        'conv1_1': 2,
        'conv1_2': 5,
        'conv2_1': 9,
    })
    torch.save(e2.state_dict(), 'pth_models/vgg_normalised_conv2.pth')
示例#4
0
    e4 = VGGEncoder()
    weight_assign(vgg4, e4, {
        'conv0': 0,
        'conv1_1': 2,
        'conv1_2': 5,
        'conv2_1': 9,
        'conv2_2': 12,
        'conv3_1': 16,
        'conv3_2': 19,
        'conv3_3': 22,
        'conv3_4': 25,
        'conv4_1': 29,
    })
    torch.save(e4.state_dict(), 'pretrained/encoder_pretrained.pth')
    
    ## VGGDecoder4
    inv4 = load_lua('pretrained/recon.t7', long_size=8)
    d4 = VGGDecoder(num_class=3,use_softmax=False)
    weight_assign(inv4, d4, {
        'conv4_1': 1,
        'conv3_4': 5,
        'conv3_3': 8,
        'conv3_2': 11,
        'conv3_1': 14,
        'conv2_2': 18,
        'conv2_1': 21,
        'conv1_2': 25,
        'conv1_1': 28,
    })
    torch.save(d4.state_dict(), 'pretrained/recon_pretrained.pth')
示例#5
0
if __name__ == '__main__':
    if not os.path.exists('pth_models'):
        os.mkdir('pth_models')

    ## VGGEncoder1
    vgg1 = load_lua('models/vgg_normalised_conv1_1_mask.t7')
    e1 = VGGEncoder(1)
    weight_assign(vgg1, e1, {
        'conv0': 0,
        'conv1_1': 2,
    })
    torch.save(e1.state_dict(), 'pth_models/vgg_normalised_conv1.pth')

    ## VGGDecoder1
    inv1 = load_lua('models/feature_invertor_conv1_1_mask.t7')
    d1 = VGGDecoder(1)
    weight_assign(inv1, d1, {
        'conv1_1': 1,
    })
    torch.save(d1.state_dict(), 'pth_models/feature_invertor_conv1.pth')

    ## VGGEncoder2
    vgg2 = load_lua('models/vgg_normalised_conv2_1_mask.t7')
    e2 = VGGEncoder(2)
    weight_assign(vgg2, e2, {
        'conv0': 0,
        'conv1_1': 2,
        'conv1_2': 5,
        'conv2_1': 9,
    })
    torch.save(e2.state_dict(), 'pth_models/vgg_normalised_conv2.pth')
示例#6
0
class PhotoWCT(nn.Module):
    def __init__(self):
        super(PhotoWCT, self).__init__()
        self.e1 = VGGEncoder(1)
        self.d1 = VGGDecoder(1)
        self.e2 = VGGEncoder(2)
        self.d2 = VGGDecoder(2)
        self.e3 = VGGEncoder(3)
        self.d3 = VGGDecoder(3)
        self.e4 = VGGEncoder(4)
        self.d4 = VGGDecoder(4)

    def transform(self, cont_img, styl_img, cont_seg, styl_seg):
        self.__compute_label_info(cont_seg, styl_seg)

        sF4, sF3, sF2, sF1 = self.e4.forward_multiple(styl_img)

        cF4, cpool_idx, cpool1, cpool_idx2, cpool2, cpool_idx3, cpool3 = self.e4(
            cont_img)
        sF4 = sF4.data.squeeze(0)
        cF4 = cF4.data.squeeze(0)
        # print(cont_seg)
        csF4 = self.__feature_wct(cF4, sF4, cont_seg, styl_seg)
        Im4 = self.d4(csF4, cpool_idx, cpool1, cpool_idx2, cpool2, cpool_idx3,
                      cpool3)

        cF3, cpool_idx, cpool1, cpool_idx2, cpool2 = self.e3(Im4)
        sF3 = sF3.data.squeeze(0)
        cF3 = cF3.data.squeeze(0)
        csF3 = self.__feature_wct(cF3, sF3, cont_seg, styl_seg)
        Im3 = self.d3(csF3, cpool_idx, cpool1, cpool_idx2, cpool2)

        cF2, cpool_idx, cpool = self.e2(Im3)
        sF2 = sF2.data.squeeze(0)
        cF2 = cF2.data.squeeze(0)
        csF2 = self.__feature_wct(cF2, sF2, cont_seg, styl_seg)
        Im2 = self.d2(csF2, cpool_idx, cpool)

        cF1 = self.e1(Im2)
        sF1 = sF1.data.squeeze(0)
        cF1 = cF1.data.squeeze(0)
        csF1 = self.__feature_wct(cF1, sF1, cont_seg, styl_seg)
        Im1 = self.d1(csF1)
        return Im1

    def __compute_label_info(self, cont_seg, styl_seg):
        if cont_seg.size == False or styl_seg.size == False:
            return
        max_label = np.max(cont_seg) + 1
        self.label_set = np.unique(cont_seg)
        self.label_indicator = np.zeros(max_label)
        for l in self.label_set:
            # if l==0:
            #   continue
            is_valid = lambda a, b: a > 10 and b > 10 and a / b < 100 and b / a < 100
            o_cont_mask = np.where(
                cont_seg.reshape(cont_seg.shape[0] * cont_seg.shape[1]) == l)
            o_styl_mask = np.where(
                styl_seg.reshape(styl_seg.shape[0] * styl_seg.shape[1]) == l)
            self.label_indicator[l] = is_valid(o_cont_mask[0].size,
                                               o_styl_mask[0].size)

    def __feature_wct(self, cont_feat, styl_feat, cont_seg, styl_seg):
        cont_c, cont_h, cont_w = cont_feat.size(0), cont_feat.size(
            1), cont_feat.size(2)
        styl_c, styl_h, styl_w = styl_feat.size(0), styl_feat.size(
            1), styl_feat.size(2)
        cont_feat_view = cont_feat.view(cont_c, -1).clone()
        styl_feat_view = styl_feat.view(styl_c, -1).clone()

        if cont_seg.size == False or styl_seg.size == False:
            target_feature = self.__wct_core(cont_feat_view, styl_feat_view)
        else:
            target_feature = cont_feat.view(cont_c, -1).clone()
            if len(cont_seg.shape) == 2:
                t_cont_seg = np.asarray(
                    Image.fromarray(cont_seg).resize((cont_w, cont_h),
                                                     Image.NEAREST))
            else:
                t_cont_seg = np.asarray(
                    Image.fromarray(cont_seg, mode='RGB').resize(
                        (cont_w, cont_h), Image.NEAREST))
            if len(styl_seg.shape) == 2:
                t_styl_seg = np.asarray(
                    Image.fromarray(styl_seg).resize((styl_w, styl_h),
                                                     Image.NEAREST))
            else:
                t_styl_seg = np.asarray(
                    Image.fromarray(styl_seg, mode='RGB').resize(
                        (styl_w, styl_h), Image.NEAREST))

            for l in self.label_set:
                if self.label_indicator[l] == 0:
                    continue
                cont_mask = np.where(
                    t_cont_seg.reshape(t_cont_seg.shape[0] *
                                       t_cont_seg.shape[1]) == l)
                styl_mask = np.where(
                    t_styl_seg.reshape(t_styl_seg.shape[0] *
                                       t_styl_seg.shape[1]) == l)
                if cont_mask[0].size <= 0 or styl_mask[0].size <= 0:
                    continue

                cont_indi = torch.LongTensor(cont_mask[0])
                styl_indi = torch.LongTensor(styl_mask[0])
                if self.is_cuda:
                    cont_indi = cont_indi.cuda(0)
                    styl_indi = styl_indi.cuda(0)

                cFFG = torch.index_select(cont_feat_view, 1, cont_indi)
                sFFG = torch.index_select(styl_feat_view, 1, styl_indi)
                # print(len(cont_indi))
                # print(len(styl_indi))
                tmp_target_feature = self.__wct_core(cFFG, sFFG)
                # print(tmp_target_feature.size())
                if torch.__version__ >= "0.4.0":
                    # This seems to be a bug in PyTorch 0.4.0 to me.
                    new_target_feature = torch.transpose(target_feature, 1, 0)
                    new_target_feature.index_copy_(0, cont_indi, \
                            torch.transpose(tmp_target_feature,1,0))
                    target_feature = torch.transpose(new_target_feature, 1, 0)
                else:
                    target_feature.index_copy_(1, cont_indi,
                                               tmp_target_feature)

        target_feature = target_feature.view_as(cont_feat)
        ccsF = target_feature.float().unsqueeze(0)
        return ccsF

    def __wct_core(self, cont_feat, styl_feat):
        cFSize = cont_feat.size()
        c_mean = torch.mean(cont_feat, 1)  # c x (h x w)
        c_mean = c_mean.unsqueeze(1).expand_as(cont_feat)
        cont_feat = cont_feat - c_mean

        iden = torch.eye(cFSize[0])  # .double()
        if self.is_cuda:
            iden = iden.cuda()

        contentConv = torch.mm(cont_feat,
                               cont_feat.t()).div(cFSize[1] - 1) + iden
        # del iden
        c_u, c_e, c_v = torch.svd(contentConv, some=False)
        # c_e2, c_v = torch.eig(contentConv, True)
        # c_e = c_e2[:,0]

        k_c = cFSize[0]
        for i in range(cFSize[0] - 1, -1, -1):
            if c_e[i] >= 0.00001:
                k_c = i + 1
                break

        sFSize = styl_feat.size()
        s_mean = torch.mean(styl_feat, 1)
        styl_feat = styl_feat - s_mean.unsqueeze(1).expand_as(styl_feat)
        styleConv = torch.mm(styl_feat, styl_feat.t()).div(sFSize[1] - 1)
        s_u, s_e, s_v = torch.svd(styleConv, some=False)

        k_s = sFSize[0]
        for i in range(sFSize[0] - 1, -1, -1):
            if s_e[i] >= 0.00001:
                k_s = i + 1
                break

        c_d = (c_e[0:k_c]).pow(-0.5)
        step1 = torch.mm(c_v[:, 0:k_c], torch.diag(c_d))
        step2 = torch.mm(step1, (c_v[:, 0:k_c].t()))
        whiten_cF = torch.mm(step2, cont_feat)

        s_d = (s_e[0:k_s]).pow(0.5)
        targetFeature = torch.mm(
            torch.mm(torch.mm(s_v[:, 0:k_s], torch.diag(s_d)),
                     (s_v[:, 0:k_s].t())), whiten_cF)
        targetFeature = targetFeature + s_mean.unsqueeze(1).expand_as(
            targetFeature)
        return targetFeature

    @property
    def is_cuda(self):
        return next(self.parameters()).is_cuda

    def forward(self, x):
        f1 = self.e1.forward(x)
        y1 = self.d1.forward(f1.detach())

        f2, pool1_idx, pool1_size = self.e2.forward(x)
        y2 = self.d2.forward(f2.detach(),
                             pool1_idx=pool1_idx,
                             pool1_size=pool1_size)

        f3, pool1_idx, pool1_size, pool2_idx, pool2_size = self.e3.forward(x)
        y3 = self.d3.forward(f3.detach(),
                             pool1_idx=pool1_idx,
                             pool1_size=pool1_size,
                             pool2_idx=pool2_idx,
                             pool2_size=pool2_size)

        f4, pool1_idx, pool1_size, pool2_idx, pool2_size, pool3_idx, pool3_size = self.e4.forward(
            x)
        y4 = self.d4.forward(f4.detach(),
                             pool1_idx=pool1_idx,
                             pool1_size=pool1_size,
                             pool2_idx=pool2_idx,
                             pool2_size=pool2_size,
                             pool3_idx=pool3_idx,
                             pool3_size=pool3_size)

        return y1, y2, y3, y4