示例#1
0
 def __init__(self, model_path, weights_path, gpu_num=1):
     if not self.check_model(model_path):
         self.check_weights(weights_path)
         self.score = config.score
         self.iou = config.iou
         self.weights_path = weights_path
         self.model_path = model_path
         self.gpu_num = gpu_num
         self.colors = utils_image.get_random_colors(
             len(config.classes_names))
         self.yolo4_model = YOLO(config.image_input_shape)()
         self.convertor()
         print('Converting finished !')
示例#2
0
def load_model(session, m_type, m_name, logger):
    # load the weights based on best loss
    best_dir = "best_loss"

    # check model dir
    model_path = "models/" + m_name
    path = os.path.join(model_path, best_dir)
    if not os.path.exists(path):
        raise FileNotFoundError

    if m_type == "simple":
        model = Simple(m_name, config, logger)
    elif m_type == "YOLO":
        model = YOLO(m_name, config, logger)
    elif m_type == "GAP":
        model = GAP(m_name, config, logger)
    elif m_type == "NAS":
        model = NASNET(m_name, config, logger)
    elif m_type == "INC":
        model = Inception(m_name, config, logger)
    else:
        raise ValueError

    # load the best saved weights
    ckpt = tf.train.get_checkpoint_state(path)
    if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
        logger.log('Reloading model parameters..')
        model.restore(session, ckpt.model_checkpoint_path)

    else:
        raise ValueError('There is no best model with given model')

    return model
示例#3
0
def create_model(session, m_type, m_name, logger):
    """
    create or load the last saved model
    :param session: tf.session
    :param m_type: model type
    :param m_name: model name (equal to folder name)
    :param logger: logger
    :return: None
    """
    if m_type == "simple":
        model = Simple(m_name, config, logger)
    elif m_type == "YOLO":
        model = YOLO(m_name, config, logger)
    elif m_type == 'GAP':
        model = GAP(m_name, config, logger)
    elif m_type == 'NAS':
        model = NASNET(m_name, config, logger)
    elif m_type == 'INC':
        model = Inception(m_name, config, logger)
    else:
        raise ValueError

    ckpt = tf.train.get_checkpoint_state(model.model_dir)
    if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
        logger.log('Reloading model parameters..')
        model.restore(session, ckpt.model_checkpoint_path)

    else:
        logger.log('Created new model parameters..')
        session.run(tf.global_variables_initializer())

    return model
示例#4
0
    def __init__(self, args):
        print("args = {")
        for k in args:
            print("\t{} = {}".format(k, args[k]))
        print("}")
        self.args = args.copy()

        if self.args["dataset_path"] != "":
            self.data_loader = VOCDataLoader(self.args["dataset_path"],
                                             num_processes=4,
                                             preload=self.args["preload"])

        self.classes = read_classes(self.args["class_path"])
        self.color_dict = get_color_dict(self.classes, self.args["color_path"])

        if self.args["model_save_dir"] != "" and not os.path.exists(
                self.args["model_save_dir"]):
            os.makedirs(self.args["model_save_dir"])
        if self.args["graph_save_dir"] != "" and not os.path.exists(
                self.args["graph_save_dir"]):
            os.makedirs(self.args["graph_save_dir"])

        self.yolo = YOLO()
示例#5
0
def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape,
                          image_shape):
    '''Process Conv layer output'''

    box_xy, box_wh, box_confidence, box_class_probs = YOLO.yolo_head(
        feats, anchors, num_classes, input_shape)

    boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)
    # (x, 4)
    boxes = np.reshape(boxes, [-1, 4])
    box_scores = box_confidence * box_class_probs
    # (x, 10)
    box_scores = np.reshape(box_scores, [-1, num_classes])
    # (x, 4), (x, 10)
    return boxes, box_scores
示例#6
0
def _main_(args):

    config_path = args.conf
    weights_path = args.weights
    image_path = args.image

    with open(config_path) as config_buffer:
        config = json.load(config_buffer)

    ###############################
    #   Make the model
    ###############################

    yolo = YOLO(architecture=config['model']['architecture'],
                input_size=config['model']['input_size'],
                labels=config['model']['labels'],
                max_box_per_image=config['model']['max_box_per_image'],
                anchors=config['model']['anchors'])

    ###############################
    #   Load trained weights
    ###############################

    yolo.load_weights(weights_path)

    ###############################
    #   Predict bounding boxes
    ###############################

    image = cv2.imread(image_path)
    boxes = yolo.predict(image)
    image = draw_boxes(image, boxes, config['model']['labels'])

    print len(boxes), 'boxes are found'

    cv2.imwrite(image_path[:-4] + '_detected' + image_path[-4:], image)
示例#7
0
文件: train.py 项目: zhoun59/YOLO
    for epoch in range(epoches):
        running_loss = 0.0
        for i, (img, truth) in enumerate(dataset):
            optimizer.zero_grad()
            if cuda:
                img, truth = img.cuda(), truth.cuda()

            pred = model(img)
            loss = criterion(pred, truth)

            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            print(loss.item())
            if i % 20 == 19:
                print("Running loss:%f" % (running_loss / 20))
                running_loss = .0

            torch.save(net.state_dict(), "yolov4.ptn")


if __name__ == "__main__":
    cocoset = YOLOData(img_dir, ann_dir)
    coco = DataLoader(cocoset, batch_size=1)
    net = YOLO(cfg_file)
    net.load_weights("weights/yolov4.weights")
    criterion = YOLOLoss()
    optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
    train(net, coco, criterion, optimizer)
示例#8
0
def yolo4_loss(args):
    '''Return yolo4_loss tensor

    Parameters
    ----------
    yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
    y_true: list of array, the output of preprocess_true_boxes
    anchors: array, shape=(N, 2), wh
    num_classes: integer
    ignore_thresh: float, the iou threshold whether to ignore object confidence loss

    Returns
    -------
    loss: tensor, shape=(1,)

    '''
    # total_location_loss = 0
    # total_confidence_loss = 0
    # total_class_loss = 0
    loss = 0

    anchors, num_classes, ignore_thresh = config.anchors, config.num_classes, config.ignore_thresh

    y_pred_base, y_true = args[:3], args[3:]
    # 3
    num_layers = len(anchors) // 3  # default setting
    # (9, 2)
    anchors = np.asarray(anchors, dtype=int)

    input_shape = K.cast(K.shape(y_pred_base[0])[1:3] * 32, K.dtype(y_true[0]))
    grid_shapes = [
        K.cast(K.shape(y_pred_base[l])[1:3], K.floatx())
        for l in range(num_layers)
    ]
    # N
    batch = K.shape(y_pred_base[0])[0]

    batch_tensor = K.cast(batch, K.floatx())

    for l in range(num_layers):
        object_mask = y_true[l][..., 4:5]
        true_class_probs = y_true[l][..., 5:]

        grid, raw_pred, pred_xy, pred_wh = YOLO().yolo_head(
            y_pred_base[l],
            anchors[config.anchor_mask[l]],
            num_classes,
            input_shape,
            calc_loss=True)
        pred_box = K.concatenate([pred_xy, pred_wh])

        # raw_true_xy = y_true[l][..., :2] * grid_shapes[l][::-1] - grid
        raw_true_wh = K.log(
            y_true[l][..., 2:4] /
            (anchors[config.anchor_mask[l]] * input_shape[::-1] + K.epsilon()))
        # raw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh))  # avoid log(0)=-inf
        box_loss_scale = 2 - y_true[l][..., 2:3] * y_true[l][..., 3:4]

        ignore_mask = tf.TensorArray(K.dtype(y_true[0]),
                                     size=1,
                                     dynamic_size=True)
        object_mask_bool = K.cast(object_mask, 'bool')

        def loop_body(b, ignore_mask):
            true_box = tf.boolean_mask(y_true[l][b, ..., 0:4],
                                       object_mask_bool[b, ..., 0])
            iou = utils.iou_cors_index(pred_box[b], true_box)
            best_iou = K.max(iou, axis=-1)
            ignore_mask = ignore_mask.write(
                b, K.cast(best_iou < ignore_thresh, K.dtype(true_box)))
            return b + 1, ignore_mask

        _, ignore_mask = tf.while_loop(lambda b, *args: b < batch, loop_body,
                                       [0, ignore_mask])

        ignore_mask = ignore_mask.stack()
        ignore_mask = K.expand_dims(ignore_mask, -1)

        confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) + \
                              (1 - object_mask) * K.binary_crossentropy(object_mask, raw_pred[..., 4:5],
                                                                        from_logits=True) * ignore_mask

        class_loss = object_mask * K.binary_crossentropy(
            true_class_probs, raw_pred[..., 5:], from_logits=True)

        raw_true_box = y_true[l][..., 0:4]
        ciou = box_ciou(pred_box, raw_true_box)
        ciou_loss = object_mask * box_loss_scale * ciou
        ciou_loss = K.sum(ciou_loss) / batch_tensor
        location_loss = ciou_loss

        confidence_loss = K.sum(confidence_loss) / batch_tensor
        class_loss = K.sum(class_loss) / batch_tensor
        loss += location_loss + confidence_loss + class_loss
        # total_location_loss += location_loss
        # total_confidence_loss += confidence_loss
        # total_class_loss += class_loss

    loss = K.expand_dims(loss, axis=-1)

    return loss
示例#9
0
文件: detect.py 项目: QQQQQby/YOLO
                        "-1 means cpu.")
    parser.add_argument('--num_processes',
                        type=int,
                        default=0,
                        help='number of processes.')
    return parser.parse_args().__dict__


if __name__ == '__main__':
    args = parse_args()
    classes = read_classes(args["class_path"])
    color_dict = get_color_dict(classes, args["color_path"])
    anchors = read_anchors(
        args["anchor_path"]) if args["anchor_path"] else None
    model = YOLO(classes,
                 model_load_path=args["model_load_path"],
                 anchors=anchors,
                 device_ids=args["device_ids"])
    if args["input_path"].endswith(".jpg") or \
            args["input_path"].endswith(".jpeg") or \
            args["input_path"].endswith(".png"):
        model.detect_image(
            args["input_path"],
            args["score_threshold"],
            args["iou_threshold"],
            color_dict,
            do_show=args["do_show"],
            delay=0,
            output_path=args["output_path"] if args["output_path"] else None)
    elif args["input_path"].endswith(".mp4"):
        model.detect_video(
            args["input_path"],
示例#10
0
def _main_(args):

    config_path = args.conf

    with open(config_path) as config_buffer:
        config = json.load(config_buffer)

    ###############################
    #   Parse the annotations
    ###############################

    # parse annotations of the training set
    train_imgs, train_labels = parse_annotation(
        config['train']['train_annot_folder'],
        config['train']['train_image_folder'], config['model']['labels'])

    # parse annotations of the validation set, if any, otherwise split the training set
    if os.path.exists(config['valid']['valid_annot_folder']):
        valid_imgs, valid_labels = parse_annotation(
            config['valid']['valid_annot_folder'],
            config['valid']['valid_image_folder'], config['model']['labels'])
    else:
        train_valid_split = int(0.8 * len(train_imgs))
        np.random.shuffle(train_imgs)

        valid_imgs = train_imgs[train_valid_split:]
        train_imgs = train_imgs[:train_valid_split]

    if len(set(config['model']['labels']).intersection(train_labels)) == 0:
        print "Labels to be detected are not present in the dataset! Please revise the list of labels in the config.json file!"

        return

    ###############################
    #   Construct the model
    ###############################

    yolo = YOLO(architecture=config['model']['architecture'],
                input_size=config['model']['input_size'],
                labels=config['model']['labels'],
                max_box_per_image=config['model']['max_box_per_image'],
                anchors=config['model']['anchors'])

    ###############################
    #   Load the pretrained weights (if any)
    ###############################

    if os.path.exists(config['train']['pretrained_weights']):
        yolo.load_weights(config['train']['pretrained_weights'])

    ###############################
    #   Start the training process
    ###############################

    yolo.train(train_imgs=train_imgs,
               valid_imgs=valid_imgs,
               train_times=config['train']['train_times'],
               valid_times=config['valid']['valid_times'],
               nb_epoch=config['train']['nb_epoch'],
               learning_rate=config['train']['learning_rate'],
               batch_size=config['train']['batch_size'],
               warmup_bs=config['train']['warmup_batches'],
               object_scale=config['train']['object_scale'],
               no_object_scale=config['train']['no_object_scale'],
               coord_scale=config['train']['coord_scale'],
               class_scale=config['train']['class_scale'],
               debug=config['train']['debug'])
示例#11
0
class Classifier:
    def __init__(self, args):
        print("args = {")
        for k in args:
            print("\t{} = {}".format(k, args[k]))
        print("}")
        self.args = args.copy()

        if self.args["dataset_path"] != "":
            self.data_loader = VOCDataLoader(self.args["dataset_path"],
                                             num_processes=4,
                                             preload=self.args["preload"])

        self.classes = read_classes(self.args["class_path"])
        self.color_dict = get_color_dict(self.classes, self.args["color_path"])

        if self.args["model_save_dir"] != "" and not os.path.exists(
                self.args["model_save_dir"]):
            os.makedirs(self.args["model_save_dir"])
        if self.args["graph_save_dir"] != "" and not os.path.exists(
                self.args["graph_save_dir"]):
            os.makedirs(self.args["graph_save_dir"])

        self.yolo = YOLO()

    def run(self):
        if self.args["image_detect_path"] != "":
            self.yolo.detect_image_and_show(self.args["image_detect_path"],
                                            self.color_dict, 0)

        if self.args["video_detect_path"] != "":
            self.yolo.detect_video_and_show(
                self.args["video_detect_path"],
                self.color_dict,
            )
        if not any([
                self.args["do_train"], self.args["do_eval"],
                self.args["do_test"]
        ]):
            return None

        print('-' * 20 + 'Reading data' + '-' * 20, flush=True)
        data_train = self.data_loader.get_data_train(
        ) if self.args["do_train"] else []
        data_eval = self.data_loader.get_data_eval(
        ) if self.args["do_eval"] else []
        data_test = self.data_loader.get_data_test(
        ) if self.args["do_test"] else []

        print('-' * 20 + 'Preprocessing data' + '-' * 20, flush=True)
        for data_id in range(len(data_train)):
            data_train[data_id][0] = self.yolo.preprocess_image(
                *(data_train[data_id]), cvt_RGB=True)[0]
        for data_id in range(len(data_eval)):
            data_eval[data_id][0] = self.yolo.preprocess_image(
                *(data_eval[data_id]), cvt_RGB=True)[0]
        for data_id in range(len(data_test)):
            data_test[data_id][0] = self.yolo.preprocess_image(
                *(data_test[data_id]), cvt_RGB=True)[0]

        if self.args["graph_save_dir"] != "":
            self.yolo.save_graph(self.args["graph_save_dir"])
        for epoch in range(self.args["num_epochs"]):
            if self.args["do_train"]:
                """Train"""
                print('-' * 20 + 'Training epoch %d' % epoch + '-' * 20,
                      flush=True)
                time.sleep(0.5)
                random.shuffle(data_train)  # 打乱训练数据
                for start in tqdm(range(0, len(data_train),
                                        self.args["train_batch_size"]),
                                  desc='Training batch: '):
                    end = min(start + self.args["train_batch_size"],
                              len(data_train))
                    loss = self.yolo.train(data_train[start:end])
                    print(loss)
                """Save current model"""
                if self.args["model_save_dir"] != "":
                    self.yolo.save(
                        os.path.join(
                            self.args["model_save_dir"],
                            time.strftime("%Y-%m-%d_%H-%M-%S",
                                          time.localtime()) + "_" +
                            str(epoch) + ".pth"))

            if self.args["do_eval"]:
                """Evaluate"""
                print('-' * 20 + 'Evaluating epoch %d' % epoch + '-' * 20,
                      flush=True)
                time.sleep(0.5)
                pred_results = []
                for start in tqdm(range(0, len(data_eval),
                                        self.args["eval_batch_size"]),
                                  desc='Evaluating batch: '):
                    end = min(start + self.args["eval_batch_size"],
                              len(data_eval))
                    pred_results += self.yolo.predict(
                        [data[0] for data in data_eval[start:end]],
                        num_processes=0)
                mmAP = self.yolo.get_mmAP(data_eval, pred_results)
                print("mmAP =", mmAP)
                if not self.args["do_train"]:
                    break

            if self.args["do_test"]:
                pass
                # """Test"""
                # print('-' * 20 + 'Testing epoch %d' % epoch + '-' * 20, flush=True)
                # time.sleep(0.1)
                # m = metrics.Metrics(self.labels)
                # for start in tqdm(range(0, len(self.data_test), self.args.test_batch_size),
                #                   desc='Testing batch: '):
                #     images = [d[0] for d in self.data_test[start:start + self.args.test_batch_size]]
                #     actual_labels = [d[1] for d in self.data_test[start:start + self.args.test_batch_size]]
                #     """forward"""
                #     batch_images = torch.tensor(images, dtype=torch.float32)
                #     outputs = self.model(batch_images)
                #     """update confusion matrix"""
                #     pred_labels = outputs.softmax(1).argmax(1).tolist()
                #     m.update(actual_labels, pred_labels)
                # """testing"""
                # print(m.get_accuracy())
                if not self.args["do_train"]:
                    break
            print()
示例#12
0
        # Get numpy image in opencv format
        np_img = preprocess.post_process_image(img1)
        # get bounding boxes: xyxy + class + confidence
        img_h, img_w, _ = np_img.shape
        target_bboxes = preprocess.decode_label(target1, img_h, img_w)

        draw_all_bboxes(np_img, target_bboxes, preprocess, gt_color,
                        "images_transformed/gt_{}.jpg".format(pos))

    import os
    os._exit(1)

    # Enable anomaly detection for debugging purpose
    torch.autograd.set_detect_anomaly(True)

    model = YOLO((channels, height, width), S, B, C)
    if num_gpu > 1:
        print("Let's use", num_gpu, "GPUs!")
        model = torch.nn.DataParallel(model)
    model = model.to(device)

    # Init tensorboard for loss visualization
    tb = Tensorboard()

    loss_func = YoloLoss(S, B, C)  # torch.nn.MSELoss(reduction="sum")
    optimizer = opt(model.parameters(),
                    momentum=momentum,
                    lr=lr,
                    weight_decay=weight_decay)  # momentum=momentum

    # Keep the loss of the best model
示例#13
0
# Load dataset
test_dataset = Dataset(test_images_dir,
                       test_files, (height, width),
                       S,
                       B,
                       C,
                       preprocess,
                       random_transform=False)
test_generator = data.DataLoader(test_dataset,
                                 batch_size=batch_size,
                                 shuffle=False,
                                 num_workers=8)

# Load model
model = YOLO((channels, height, width), S, B, C)
try:
    load_checkpoint(model)
except:
    "Try with a dataparallel model"
    model = torch.nn.DataParallel(model)
    load_checkpoint(model)
    model = model.module
model = model.to(device)

loss_func = YoloLoss(S, B, C)  # torch.nn.MSELoss(reduction="sum")

start_timestamp = time.time()

# Evaluation
model.eval()
示例#14
0
文件: run_flask.py 项目: QQQQQby/YOLO
            model.backbone = None
            torch.cuda.empty_cache()
            print("Cache cleaned.")
        model_lock.release()
        time.sleep(time_gap)


def run_server():
    server = pywsgi.WSGIServer(('0.0.0.0', 34560), app, log=app.logger)
    server.serve_forever()
    # app.run(threaded=False)


if __name__ == '__main__':
    classes = read_classes("./data/coco-ch.names")
    color_dict = get_color_dict(classes, "./data/colors")
    anchors = read_anchors("./data/anchors")
    model = YOLO(classes,
                 model_load_path=model_path,
                 anchors=anchors,
                 device_ids="0")

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    model_use_time = time.time()
    model_lock = threading.Lock()
    threading.Thread(target=cuda_memory_control, args=(60, 30)).start()
    threading.Thread(target=run_server).start()
    print("Server is successfully started.")
示例#15
0
    label_dict = make_label_dict('data/class_names.txt')
    C = len(label_dict)
    dataset = YOLODataset('data/train',
                          S,
                          B,
                          C,
                          label_dict=label_dict,
                          to_tensor=to_tensor)
    dataloader = BaseDataLoader(dataset=dataset, batch_size=args.batch_size)

    len_train = len(dataset) * 8 // 10
    len_val = len(dataset) - len_train
    train_dataloader, val_dataloader = dataloader.split([len_train, len_val])

    net = YOLO(S, B, C)
    if args.gpu:
        net = net.cuda()
    net = nn.DataParallel(net)

    criterion = Loss(S, B, C)
    metric = Loss(S, B, C)
    optimizer = optim.SGD(filter(lambda p: p.requires_grad, net.parameters()),
                          lr=args.lr,
                          momentum=0.9)
    scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)

    model = Model(net)

    model.compile(optimizer, criterion, metric, scheduler, label_dict)
    model.fit(train_dataloader=train_dataloader,
示例#16
0
class Yolo4(object):
    def __init__(self, model_path, weights_path, gpu_num=1):
        if not self.check_model(model_path):
            self.check_weights(weights_path)
            self.score = config.score
            self.iou = config.iou
            self.weights_path = weights_path
            self.model_path = model_path
            self.gpu_num = gpu_num
            self.colors = utils_image.get_random_colors(
                len(config.classes_names))
            self.yolo4_model = YOLO(config.image_input_shape)()
            self.convertor()
            print('Converting finished !')

    @staticmethod
    def check_model(model_path: str):
        if os.path.exists(model_path):
            print(model_path + ' exists, stop converting!')
            return 1
        return

    @staticmethod
    def check_weights(weights_path: str):
        if weights_path.startswith('/'):
            root, file_name = os.path.split(model_path)
        elif weights_path.find('/') > 0:
            root, file_name = weights_path.split('/')
        else:
            root = ''
            file_name = weights_path
        file_pre_name = file_name.split('.')[0]
        file_lock_name = root + '/.' + file_pre_name + '.lock'
        if os.path.exists(file_lock_name):
            return 'Weights file has been transformed yet!'
        else:
            with open(weights_path, 'rb') as f:
                data = f.read()
                f.close()

            with open(weights_path, 'wb') as f:
                f.write(data[20:] + data[:20])
                f.close()

            with open(file_lock_name, 'w') as f:
                f.write('')
                f.close()
            return 'Weights file has been transformed successfully!'

    def convertor(self):

        weights_file = open(self.weights_path, 'rb')

        convs_to_load = []
        bns_to_load = []
        for i in range(len(self.yolo4_model.layers)):
            layer_name = self.yolo4_model.layers[i].name

            layer_name = utils.tf_layer_name_compat(layer_name)

            if layer_name.startswith('conv2d_'):
                convs_to_load.append((int(layer_name[7:]), i))
            if layer_name.startswith('batch_normalization_'):
                bns_to_load.append((int(layer_name[20:]), i))

        convs_sorted = sorted(convs_to_load, key=itemgetter(0))
        bns_sorted = sorted(bns_to_load, key=itemgetter(0))

        bn_index = 0
        for i in range(len(convs_sorted)):
            # print('Converting ', i)
            if i == 93 or i == 101 or i == 109:
                # no bn, with bias
                weights_shape = self.yolo4_model.layers[
                    convs_sorted[i][1]].get_weights()[0].shape
                bias_shape = self.yolo4_model.layers[
                    convs_sorted[i][1]].get_weights()[0].shape[3]
                filters = bias_shape
                size = weights_shape[0]
                darknet_w_shape = (filters, weights_shape[2], size, size)
                weights_size = np.product(weights_shape)
                # exit()
                conv_bias = np.ndarray(shape=(filters, ),
                                       dtype='float32',
                                       buffer=weights_file.read(filters * 4))
                conv_weights = np.ndarray(shape=darknet_w_shape,
                                          dtype='float32',
                                          buffer=weights_file.read(
                                              weights_size * 4))
                conv_weights = np.transpose(conv_weights, [2, 3, 1, 0])
                self.yolo4_model.layers[convs_sorted[i][1]].set_weights(
                    [conv_weights, conv_bias])
            else:
                # with bn, no bias
                weights_shape = self.yolo4_model.layers[
                    convs_sorted[i][1]].get_weights()[0].shape
                size = weights_shape[0]
                bn_shape = self.yolo4_model.layers[bns_sorted[bn_index]
                                                   [1]].get_weights()[0].shape
                filters = bn_shape[0]
                darknet_w_shape = (filters, weights_shape[2], size, size)
                weights_size = np.product(weights_shape)

                conv_bias = np.ndarray(shape=(filters, ),
                                       dtype='float32',
                                       buffer=weights_file.read(filters * 4))
                bn_weights = np.ndarray(shape=(3, filters),
                                        dtype='float32',
                                        buffer=weights_file.read(filters * 12))

                bn_weight_list = [
                    bn_weights[0], conv_bias, bn_weights[1], bn_weights[2]
                ]
                self.yolo4_model.layers[bns_sorted[bn_index][1]].set_weights(
                    bn_weight_list)

                conv_weights = np.ndarray(shape=darknet_w_shape,
                                          dtype='float32',
                                          buffer=weights_file.read(
                                              weights_size * 4))

                conv_weights = np.transpose(conv_weights, [2, 3, 1, 0])
                self.yolo4_model.layers[convs_sorted[i][1]].set_weights(
                    [conv_weights])

                bn_index += 1

        weights_file.close()

        self.yolo4_model.save(self.model_path)
示例#17
0
def yolo4_loss(args,
               anchors,
               num_classes,
               ignore_thresh=.5,
               label_smoothing=0,
               use_focal_loss=False,
               use_focal_obj_loss=False,
               use_softmax_loss=False,
               use_giou_loss=False,
               use_diou_loss=False):
    '''Return yolo4_loss tensor

    Parameters
    ----------
    yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
    y_true: list of array, the output of preprocess_true_boxes
    anchors: array, shape=(N, 2), wh
    num_classes: integer
    ignore_thresh: float, the iou threshold whether to ignore object confidence loss

    Returns
    -------
    loss: tensor, shape=(1,)

    '''
    total_location_loss = 0
    total_confidence_loss = 0
    total_class_loss = 0

    y_pred_base, y_true = args[:3], args[3:]
    # 3
    num_layers = len(anchors) // 3  # default setting
    # (9, 2)
    anchors = np.asarray(anchors, dtype=int)
    # (416, 416)
    input_shape = K.cast(K.shape(y_pred_base[0])[1:3] * 32, K.dtype(y_true[0]))
    # [(13, 13), (26, 26), (52, 52)]
    grid_shapes = [
        K.cast(K.shape(y_pred_base[l])[1:3], K.floatx())
        for l in range(num_layers)
    ]
    loss = 0
    # N
    batch = K.shape(y_pred_base[0])[0]  # batch size, tensor

    batch_tensor = K.cast(batch, K.floatx())

    for l in range(num_layers):
        object_mask = y_true[l][..., 4:5]
        true_class_probs = y_true[l][..., 5:]

        grid, raw_pred, pred_xy, pred_wh = YOLO.yolo_head(
            y_pred_base[l],
            anchors[config.anchor_mask[l]],
            num_classes,
            input_shape,
            calc_loss=True)
        pred_box = K.concatenate([pred_xy, pred_wh])

        # Darknet raw box to calculate loss.
        raw_true_xy = y_true[l][..., :2] * grid_shapes[l][::-1] - grid
        raw_true_wh = K.log(y_true[l][..., 2:4] /
                            anchors[config.anchor_mask[l]] * input_shape[::-1])
        raw_true_wh = K.switch(object_mask, raw_true_wh,
                               K.zeros_like(raw_true_wh))  # avoid log(0)=-inf
        box_loss_scale = 2 - y_true[l][..., 2:3] * y_true[l][..., 3:4]

        # Find ignore mask, iterate over each of batch.
        ignore_mask = tf.TensorArray(K.dtype(y_true[0]),
                                     size=1,
                                     dynamic_size=True)
        object_mask_bool = K.cast(object_mask, 'bool')

        def loop_body(b, ignore_mask):
            true_box = tf.boolean_mask(y_true[l][b, ..., 0:4],
                                       object_mask_bool[b, ..., 0])
            iou = utils.iou_cors_index(pred_box[b], true_box)
            best_iou = K.max(iou, axis=-1)
            ignore_mask = ignore_mask.write(
                b, K.cast(best_iou < ignore_thresh, K.dtype(true_box)))
            return b + 1, ignore_mask

        # _, ignore_mask = tf.while_loop(lambda b, *args: b < m, loop_body, [0, ignore_mask])
        _, ignore_mask = tf.while_loop(lambda b, *args: b < batch, loop_body,
                                       [0, ignore_mask])

        ignore_mask = ignore_mask.stack()
        ignore_mask = K.expand_dims(ignore_mask, -1)


        confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) + \
                              (1 - object_mask) * K.binary_crossentropy(object_mask, raw_pred[..., 4:5],
                                                                        from_logits=True) * ignore_mask

        class_loss = object_mask * K.binary_crossentropy(
            true_class_probs, raw_pred[..., 5:], from_logits=True)

        # Calculate DIoU loss as location loss
        raw_true_box = y_true[l][..., 0:4]
        diou = box_diou(pred_box, raw_true_box)
        diou_loss = object_mask * box_loss_scale * (1 - diou)
        diou_loss = K.sum(diou_loss) / batch_tensor
        location_loss = diou_loss

        confidence_loss = K.sum(confidence_loss) / batch_tensor
        class_loss = K.sum(class_loss) / batch_tensor
        loss += location_loss + confidence_loss + class_loss
        total_location_loss += location_loss
        total_confidence_loss += confidence_loss
        total_class_loss += class_loss

    # Fit for tf 2.0.0 loss shape
    loss = K.expand_dims(loss, axis=-1)

    return loss  # , total_location_loss, total_confidence_loss, total_class_loss