示例#1
0
def load_net():
    encoder_param = load_lua(
        '../../models_anti_multi_level_pyramid_stage_decoder_in/vgg_normalised_conv5_1.t7'
    )
    net_e = encoder(encoder_param)
    net_d0 = decoder0()
    net_d0.load_state_dict(
        torch.load(
            './trained_models_anti_multi_level/decoder_epoch_5.pth.tar'))
    net_d1 = decoder1()
    net_d1.load_state_dict(
        torch.load(
            './trained_models_anti_multi_level/decoder_epoch_5.pth.tar'))
    net_d2 = decoder2()
    net_d2.load_state_dict(
        torch.load(
            './trained_models_anti_multi_level/decoder_epoch_5.pth.tar'))
    net_d3 = decoder3()
    net_d3.load_state_dict(
        torch.load(
            './trained_models_anti_multi_level/decoder_epoch_5.pth.tar'))
    net_d4 = decoder4()
    net_d4.load_state_dict(
        torch.load(
            './trained_models_anti_multi_level/decoder_epoch_5.pth.tar'))
    net_d5 = decoder5()
    net_d5.load_state_dict(
        torch.load(
            './trained_models_anti_multi_level/decoder_epoch_5.pth.tar'))
    return net_e, net_d0, net_d1, net_d2, net_d3, net_d4, net_d5
示例#2
0
def load_net():
    encoder_param = load_lua('/mnt/home/xiaoxiang/haozhe/style_nas_2/models/models_photorealistic_nas/vgg_normalised_conv5_1.t7')
    net_e = encoder(encoder_param)
    net_d0 = decoder0()
    net_d0.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar')))
    net_d1 = decoder1()
    net_d1.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar')))
    net_d2 = decoder2()
    net_d2.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar')))
    net_d3 = decoder3()
    net_d3.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar')))
    net_d4 = decoder4()
    net_d4.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar')))
    net_d5 = decoder5()
    net_d5.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar')))
    return net_e, net_d0, net_d1, net_d2, net_d3, net_d4, net_d5
示例#3
0
def load_net():
    encoder_param = load_lua(
        '/home/zouyj/projects/style_transfer/stylenas/models_photorealistic_nas/vgg_normalised_conv5_1.t7'
    )
    net_e = encoder(encoder_param)
    net_d0 = decoder0()
    net_d0.load_state_dict(
        torch.load(
            os.path.join(abs_dir,
                         'trained_models_aaai/decoder_epoch_2.pth.tar')))
    net_d1 = decoder1()
    net_d1.load_state_dict(
        torch.load(
            os.path.join(abs_dir,
                         'trained_models_aaai/decoder_epoch_2.pth.tar')))
    net_d2 = decoder2()
    net_d2.load_state_dict(
        torch.load(
            os.path.join(abs_dir,
                         'trained_models_aaai/decoder_epoch_2.pth.tar')))
    net_d3 = decoder3()
    net_d3.load_state_dict(
        torch.load(
            os.path.join(abs_dir,
                         'trained_models_aaai/decoder_epoch_2.pth.tar')))
    net_d4 = decoder4()
    net_d4.load_state_dict(
        torch.load(
            os.path.join(abs_dir,
                         'trained_models_aaai/decoder_epoch_2.pth.tar')))
    net_d5 = decoder5()
    net_d5.load_state_dict(
        torch.load(
            os.path.join(abs_dir,
                         'trained_models_aaai/decoder_epoch_2.pth.tar')))
    return net_e, net_d0, net_d1, net_d2, net_d3, net_d4, net_d5